
             International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395-0056 

               Volume: 08 Issue: 12 | Dec 2021                         www.irjet.net                                                               p-ISSN: 2395-0072 

 

© 2021, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 507 
 

Divide and Conquer Sorting Techniques 

Ashutosh Gautam1, Agrasth Naman2 

1Student, Dept. of Computer Engineering, KIIT University, Odisha, India  
2Student, Dept. of Computer Engineering, KIIT University, Odisha, India 

---------------------------------------------------------------------***----------------------------------------------------------------------
Abstract - This paper shows the combination between the 
two most popular divide and conquer sorting algorithms i.e. 
quick and mergeSort. Both of these algorithms have their 
own merits and demerits. Each of these two algorithms 
attempts to sort the data of the problem in a distinct format. 
This paper makes an attempt to present a detailed 
comparative study of how the two algorithms work and 
tries to show the difference between the performance of the 
two on the basis of both space and time to reach a final 
interference.   

Key Words: Divide and conquer, MergeSort, QuickSort 
Comparisons, Time Complexity, Space Complexity. 

1. INTRODUCTION  

A sorting algorithm is a method of rearranging the data or 
items of the list in a specific order; the order can be 
escalating or DE-escalating. Sorting algorithms can be 
divided into two major categories:-Comparisons based 
sorting technique and non comparisons based sorting 
technique.[1] 

In the comparison based sorting technique, we use a block 
to compare two data of blocks and then swap or copy 
those elements if required and it continues executing until 
and unless the whole list or array is arranged in a certain 
order. 

Non comparison based sorting can only be used in some 
particular cases and it involves sorting the element of a list 
or array on the basis of their internal character of the 
value. 

Quick and merge sort both use comparison based sorting 
techniques as well as employ a common divide and 
conquer paradigm. Divide and conquer algorithms involve 
solving a problem by using recursion as the main task is 
divided into smaller sub-tasks and finally combine the 
solution of the sub-task to solve the given original task. 

Comparison of performance of sorting Algorithms involves 
the two main parameters:- 

Time Complexity represents the number of times an 
operation statement is executed.  It's not the actual time 
required  to execute an operation, it also depends  upon 

factors like processing power, programming language, 
operating software , etc.[2] 

 

2. PROCEDURE OF ALGORITHMS  

Merge Sort: 

It takes an input list and divides it until we are left with a 
bunch of sub-list of size one and that are trivially sorted, 
then the merging process begins. 

It sequentially compares the elements of two sub-lists 
together to form sorted sublists of size 2, then repeats the 
process to form a sub-list of size 4 then size 8, and so on 
and this happens until it has just one sorted sublist with 
the same size of the input list. At this point, the list is 
sorted. 

It takes O( log N) operations for a merge sort to divide an 
input list of n elements into n sublists of one element. 
Then it takes O(n) operations to merge the sub-list 
together thus it has a time complexity of O(n log n). 

It is a stable algorithm and it can be further optimized in 
practice by merging sub-list in parallel with one another.  

The biggest drawback to merge sort is that an auxiliary 
space of O(n) is required during the merging process.[3] 

Merge Sort is based on the divide and conquer technique. 



             International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395-0056 

               Volume: 08 Issue: 12 | Dec 2021                         www.irjet.net                                                               p-ISSN: 2395-0072 

 

© 2021, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 508 
 

Let's assume MergeSort( ) is a function that takes the input 
array, then calls itself for its two halves, then merges the 
sorted halves. 

And another function Merge is used to merge the two 
halves. 

- For MergeSort(list[],l ,m)  

L, R, M  as left, right, medium index respectively  

if r > l 

m = l + (r-l)/2 

MergeSort(list,l,m)  

MergeSort(list,m+1,r) 

Merge(list,l,r,m) 

- For Merge(list,l,r,m) 

Size1=m-l+1 

Size2=r-m 

Declare 2 array Arr1[] & Arr2[] 

For i=0 to Size1  

 Arr1[i]=list[l+i] 

For j=0 to Size2  

 Arr2[j]=list[m+1+j] 

Declare i=0 j=0 k=l 

While i<Size1 and j<Size2 

if Arr1[i] <=Arr2[j] 

 List[k]=Arr[i]  i++ 

Else list[k] = Arr2[j]  j++ 

k++ 

While i < Size1 

List[k]=Arr1[i] 

i++ k++ 

While j < Size2 

List[k]=Arr2[j] 

j++ k++ 

Exit. 

 

Few runtime data for merge sort according to the number 
of input elements. [4] 

Number of elements Running time (in ms) 

10000 728 

20000 1509 

30000 2272 

 

Quick Sort:- 

It first picks an element from the input list, called the 
pivot, all elements less than the pivot are placed before it 
and all the elements greater than it is placed after it. Once 
this step is completed, then the pivot is in its final position 
and the input list has been partitioned into two sub-lists 
elements less than the pivot, i.e. elements less than the 
pivot and elements greater than the pivot.[5] 

It then recursively applies the same step to each sub-list 
until it has a sub-list of at most one element which is 
trivially sorted. Once the recursion is finished the list is 
sorted on average as long as the chosen pivot divides the 
input list into recently sized pieces. It takes log n recursive 
calls to reach a list size of one. For each recursive call, it 
takes n operations to place the other elements around the 
pivot. Therefore it has an average time complexity of O(N 
LOG N).[6] At the same time, its worst-case time 
complexity is O(N^2). It happens when the chosen pivot is 
always in minimum or maximum and they actually don’t 
partition the list at all. 

This technique is used in almost sorted data. 



             International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395-0056 

               Volume: 08 Issue: 12 | Dec 2021                         www.irjet.net                                                               p-ISSN: 2395-0072 

 

© 2021, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 509 
 

However, the probability of occurring on a large random 
input is extremely small. So we generally consider the 
worst case the run time of quicksort to be of n log n. 

In practice quicksort tends to be faster than merge sort; 
this is because it uses log n stack space as it recursively 
partitioning the input list and it is usually not 
implemented as a stable sorting algorithm. 

 

Let us assume QuickSort is a function that is used to place 
elements before and after the targeted pivot. The function 
partition takes the element as a pivot element at the 
correct position in the sorted array. 

- For QuickSort 

If lowerIndex < higherIndex 

Pivot=partition(arr,lowerIndex,higherIndex) 

QuickSort(arr,lowerIndex,pivot-1) 

QuickSort(arr,pivot+1,higherIndex) 

- For partition 

Pivot = array[high] 

i = lowerIndex-1 

For j = lowerIndex to a=higherIndex-1 

If array[j]<pivot 

 i++ and swap array[i]and array[j] 

Swap array[i+1] and array[higherIndex] 

Return i + 1 

Number of elements Running time (in ms) 

10000 489 

20000 1084 

30000 1648 

 

 

Time required for quick sort for a list of elements is: 
Let the size of array is denoted by SIZE, 

T(SIZE) = T(P) + T(SIZE - P - 1) + O(SIZE) 

where P is the count of elements less than the pivot. 

Worst Case: 

The worst case happens when the division method always 
picks the maximum or minimum element as a pivot. If we 
observe our division strategy, where 1st is always picked 
as pivot, then the worst case would occur when the list is 
already arranged in escalating or de-escalating order. 
Hence, the recurrence relation becomes: 

T(SIZE) = 0 + T(SIZE - 1) + SIZE  

T( SIZE ) = T( SIZE - 1 ) +SIZE  

T(SIZE - 1) = T( SIZE -2) + SIZE  -1 



             International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395-0056 

               Volume: 08 Issue: 12 | Dec 2021                         www.irjet.net                                                               p-ISSN: 2395-0072 

 

© 2021, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 510 
 

T(SIZE ) = T( SIZE - 2) + SIZE - 1 + SIZE  

T(SIZE ) = T(SIZE  - 3) + SIZE  -2 + SIZE  -1 + SIZE   

T(SIZE ) = 1 + 2 + 3 + ………+ SIZE   

T(SIZE ) = (SIZE  (SIZE  + 1))/2 

Here, the time complexity is O(n^2), where n is SIZE. 

 Best case: The Best case occurs when the middle element 
is chosen as a pivot for the partition process. Thus the 
recurrence relation becomes: 

T(SIZE) will be 0 if SIZE is equal to 1, otherwise: 

T(SIZE) = 2T (SIZE/2) + O(SIZE). 

T(SIZE ) = 2T ( SIZE /2) +SIZE  

T(SIZE /2) = 2T (SIZE /4)  + SIZE /2 

T(SIZE ) = 2{2T(SIZE /4) + SIZE /2}+SIZE  

T(SIZE ) = 2ᴾ T(SIZE /2ᴾ) + k SIZE  

2ᴾ = n, k = log₂ n, T(1) = 0, where n is SIZE  

T(SIZE ) = SIZE T(1) + SIZE log₂ SIZE  

T(SIZE ) = SIZE .0 + SIZE log₂SIZE  

T(SIZE ) = SIZE  log₂ SIZE  

Here, the time complexity is O(nlogn), where n is SIZE. 

 

3. CONCLUSIONS 

 In this study a comparison of performance has been done 
between the two most popular divide and conquer sorting 
techniques with the parameter of space and time 
complexity. Quicksort was found to be very efficient on 
smaller datasets while merge sort would be recommended 
on larger datasets. Although merge sort is faster, its 

requirement of extra memory space of O(n) is very 
inefficient in comparison to quicksort where the space 
requirement is O(log n). So, on smaller data sets (less than 
400 elements) it is preferable to use quicksort while 
merge sort should be the first choice when dealing with 
relatively larger datasets. QuickSort is recommended to all 
data sizes if cache locality needs to be used. This is 
believed to be very useful for future programmers as it 
gives more clarity of choice when they face a dilemma on 
when and where to use each of these two sorting 
techniques. 

ACKNOWLEDGEMENT  

The authors would like to thank Dr.Santosh Kumar 
Baliarsingh (Assistant Professor in the School of Computer 
Engineering, KIIT, Deemed to be University, 
Bhubaneswar) for his valuable insights and suggestions on 
the paper. 

REFERENCES 

1) J. Phongsai, "Research paper on Sorting Algorithm," 
2009. 

2) D. Knuth, in The art of programming sorting and 
searching,1988. 

3) Aditya, DM., Deepak, G. Selection of Best Sorting 
Algorithm. International Journal of Intelligent 
Information Processing. 

4) Jules RT, Algorithms and Complexity Theory, Durban 
(2010) 

5) J.-p. T. T. M. Hill, An introduction to Data Structure 
with the application. 

6) Shuang, C., Shunning, J., Bingsheng, H., Xuenyan, T. A 
Study of Sorting Algorithms on Approximate Memory. 
San Francisco. 2016 

BIOGRAPHIES  
 

 Ashutosh Gautam is a sophomore at 
Kalinga Institute of Industrial 
technology, Bhubaneswar. He is 
pursuing a bachelor's degree in 
technology in the computer science 
branch. 

 Agrasth Naman is a sophomore at 
Kalinga Institute of Industrial 
technology, Bhubaneswar. He is 
pursuing a bachelor's degree in 
technology in the computer science 
branch. 


