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Abstract - This paper presents a Genetic Algorithm for 
reproducing images. The main motto of this image 
enhancement is to process the images so that the result is 
more suitable than the original image of a specific application. 
Image enhancement is used to improve the visual effect and 
quality of an image. Input images can have one or more 
channels (i.e., the image could be binary, gray, or color, such as 
RGB). The Genetic Algorithm (GA) starts from a casual 
generated image of the exact shape as the image input. This 
casually generated image is developed, using crossover and 
alternation, using GA until it produces an image which is 
similar to the original image. The same original images might 
not be accurately produced, but at least a same image will be 
generated. Image enhancement is one of the try and tough 
techniques in digital image processing. We willl be performing 
this process on four different types of images low quality RGB 
& B/W, high quality RGB & B/W & At last comparing the 
accuracy of different images by Structural Similarity Index 
Measure (SSIM). This paper presents an overview of Genetic 
Algorithms for reproducing images.  
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1. INTRODUCTION  
 
It is the implementation of Genetic Algorithm functions 
which is responsible for reproducing the images. It first 
reads a coloured image file named “cherries.jpg”, there in the 
project, and then passes them through the function of GA. We 
display that image and how it is reproduced by Genetic 
Algorithm for Reproducing Images (GARI) after a 50,000-
generation gap. Genetic algorithms find the output space of a 
function via simulated evolution, i.e., the survival of the 
fittest strategy. Genetic algorithms are shown to decode 
linear and nonlinear problems too by searching all regions of 
the state space and highly exploiting the promising areas 
through different combinations, crossover, and selection 
operations applied to the individual in the population, which 
is the individual’s solution (analogous to chromosomes) of 
the state area. These operators, which are dependent on 
probability rules, are put up to the population, and 
successive generations are reproduced. Basically, the start of 
the search for an optimal solution begins with any randomly 
generated population of chromosomes. Each set of 
generation will have a newer set of chromosomes founded 
from the application of the operators. A fitness, or objective 
function, is to be defined related to the problems. The parent 
selection process makes sure that the fittest and the bestest 

member of the population have the highest probability ratio 
of becoming parents, in the thought that their offspring will 
come together to desirable features, and have higher fitness, 
to both. The algorithms terminate either when the set of 
generation numbers is reached, or the fitness has reached a 
"good" level. The main use of a Genetic Algorithm to solve 
these six major issues: (i) chromosome representation, (ii) 
selection function, (iii) creation of the initial population, (iv) 
genetic operators making up the reproduction function, (v) 
fitness function, and (vi) termination criteria. 

2. LITERATURE SURVEY 
 
The related work to reproducing images using Genetic 
Algorithm is discussed here, K.D Gupta & Sajib Sen proposed 
the method for multi-objective Genetic Algorithm. Their 
method will first resize the image using normal image 
resizing option provided by operating system or standard 
library and attach the extra 2 array of data which contains 
number of 1 in main image in each rows and columns. Also, 
the total number of 1 in the image will be there too. Now they 
will take the help of genetic algorithm which will use this 
informations to reproduce the image in original size. From 
their result analysis, it seems that if they make a smaller 
block, they can produce image faster and more accurate to 
original. Also, its seldom that they hit the local optima and 
stuck with not good enough version. Changing mutation rate 
that time gives them better result. It seems they need to apply 
dynamic penalty method and mutation rate to tackle this 
issue[1]. Shivangini & Arvind proposed their algorithm 
reduce noise reduction of different contrast value images is 
98%, with mean=2.60, this can be improved. It is 
implemented with noise (different contrast value). De- 
noising was carried out with the mean of each noise 
reduction[2]. Aravind & Co proposed the image segmentation 
system developed by them under the constraint condition, 
the foremost being that it performs operation only for 
colorless images, there exists room for development in 
extending the system to applications in environments 
conforming to colored images. Recently, researchers have 
investigated the application of Genetic Algorithms into the 
color image segmentation problem[3]. M. Yu & Co proposed 
knowledge of the object shape, it is difficult to determine the 
optimum size of the structuring element. One possible way to 
select the suitable structuring element size is to use the edge 
characteristic-scale analysis. More extensive studies for 
automatic selection of the parameters can be carried out[4]. 
Sara Hashemi proposed method uses a simple chromosome 
structure, Fitness function: In the proposed method, the 
number of edges and their overall intensity are used as 
fitness value for each chromosome because a gray image with 
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good visual contrast includes many intensive edges, Selection 
algorithm: Selection of the individuals is done based on the 
fitness value of the solutions, Crossover and different 
operators: Because of developing individual chromosomes 
based on an easy structure[5]. 

3. PROPOSED ARCHITECTURE 
 
Following steps to follow in order to reproducing an image, 
are as follows: 

 Read an image 
 Prepare the fitness function 
 Create an instance of the pygad.GA class with the 

appropriate parameters 
 Run PyGAD 
 Plot results 
 Calculate some statistics 

 
Fig -1: Block Diagram 

 
It works with both color and gray images without any 
modifications. Just give the image path. Using three 
parameters, we can design our own to satisfy our needs. The 
parameters are: 1) Population size. i.e., number of 
individuals per population. 2) Mating pool size. i.e., Number 
of the chosen parents in the mating pool. 3) Mutation 
percentage. i.e., number of genes to change their values. 
Value encoding used for representing the input. Crossover is 
applied by giving half of genes from the two parents. The 
changes in the image are applied by randomly changing the 
values of randomly selected predefined percent of genes 
from the parent’s chromosome. First step in GA is to 
represent/encode the input as a sequence of characters. The 
encoding used is value encoding by giving each gene in the 
chromosome its actual value in the image. Image is 
converted into a chromosome by reshaping it as a single row 
vector. Creating an initial population randomly. First step in 
GA is to represent the input in a sequence of characters. The 
encoding used is value encoding by giving each gene in the 
chromosome its actual value. 
 
Calculating the fitness of a single solution. The fitness is 
basically calculated using the sum of absolute difference 
between genes values in the original and reproduced 
chromosomes. Then population fitness calculates the fitness 
of all solutions in the population. 
 
selects the best individuals in the current generation, 
according to the number of parents specified, for mating and 
generating a new better population. Then applying crossover 

operation to the set of currently selected parents to create a 
new generation. Applying mutation by selecting a predefined 
percent of genes randomly. Values of the randomly selected 
genes are changed randomly. 
 
Saving the best solution in a given generation as an image in 
the specified directory. Image is saved according to the stop 
point to make sure the stop saves images from all 
generations as saving many images will make the algorithm 
work slow. Show all individuals as images in a single graph. 
 

4. PROPOSED MODEL 
 
4.1 Implementation 
 
Genetic algorithms are a random-based enhancement 
technique that has a number of generic processes that are 
normally followed to solve any enhanced problem. These 
processes are then made by choice to the problem being 
solved[7]. This paper discusses these processes in deep but 
focuses on how to modify them according to this model. The 
summary of these steps is as follows: 

4.1.1 Data Representation (Read an Image) 
 
The first task for an image problem using Genetic algorithm 
is to ponder about the finest way to showcase the data. 
Genetic algorithm trusts the chromosome (i.e., solution) as a 
1D row vector. The input image will not be 1D. The image 
might be in 2D if it’s a binary or a gray image. 

There might be 2 or more than 2 dimensions if the input 
image is colour. If it’s RGB, for eg, then there are three 
dimensions, one for every channel. Any data of greater than 
1 dimension must be represented in a 1D vector. Is it 
possible that we convert the MD data to a 1D vector ? 

Going with the easy case in which the input is a 2D image 
(i.e., 2D matrix), changing it into a 1D vector needs us to mix 
the 2 dimensions into a one dimension. The matrix has n 
number of rows, and its compulsory to mix all of these rows 
into one’s row[8]. This can be done by stacking the multiple 
rows together. This is illustrated in the figure 3 & 4. The 
figure shows how an image/matrix of 3 rows and 3 columns. 
That’s a total of 3x3=9 elements. 

 

Fig -2: Input Image 
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When converting to a 1D vector, the vector length will 
obviously be 9. The first three figures of this vector will be 
chosen from the first row in the image. The next three 
elements of the vector will be chosen from the second row, 
and lastly the last three elements in the vector will be taken 
from the last row. 

 

Fig -3: 2D Image into 1D Vector[6] 

 

Fig -4: 3D Image into 1D Vector[6] 

While converting the MD data to a 1D vector is the last step 
for representing the data of this model, but it may not be the 
last tread for other similar problems. In this model, value 
encoding is used. The similar values in the image are used in 
the chromosome. In the other problems, it may prefer to 
encode the values in different ways. In this particular case, 
there is an encoding step between the original form of the 
data and the chromosome. 

4.1.2 Initializing Population 
 
GA starts an initial population, which may be a group of 
solutions (chromosomes) to the given problem. These 
solutions are randomly generated. A function named 
initial_population() is created to return such a population.[9] 

Without even looking at the function arguments, let’s think 
about what arguments are expected to be passed to it. In 
beginning, a chromosome (1D vector) is to be created. The 
vector length is almost same to the number of objects in the 
image. Thus, there must be an argument to assist in 
calculating this length. This is why the function accepts the 
form of the image because the first argument named 
img_shape. 

4.1.3 Fitness Calculation 
 
The next thing is to create a function which will be used as a 
fitness function for calculating the fitness value for every 
solution within the population. This function must be a 
maximization function that accepts 2 parameters 
representing an answer and its index. It returns a value 
representing the fitness value. 

The fitness value is calculated using the sum of absolute 
difference between genes values within the original and 
reproduced chromosomes. The gari.img2chromosome() 
function is named before the fitness function to represent 
the image as a vector because the Genetic Algorithm can 
work with 1D chromosomes. 

After calculating the fitness values for all the possible 
solutions, the very next step is to select the perfect one of 
them for making the next population. The best of these 
solutions is called parents. By mating these parents, the 
think for a return is good solutions (offspring). 

4.1.4 Parent Selection 
 
The parents selected from a given population are the 
simplest solutions within it. once we say “best solutions”, 
we’re pertaining to the solutions with the very best fitness 
values. 

Assume that the population has 6 solutions and their fitness 
values are as given within the figure below. Before selecting 
the simplest parents, we'd like to make a decision what 
percentage parents to pick . Assuming that half (3 out of 6) of 
the solutions are going to be selected, then the simplest 3 
solutions are those with the very best fitness values. This is 
why we need the solutions with ID 4, 2, and 6 are 
selected[10]. 

4.1.5 Crossover 
 
Mating two organisms has a meaning of creating a fresh 
offspring that shares the genes inside both of them. The 
crossover operation selects a number of genes from each 
parent and places them into their offspring. 

 

Fig -5: Crossover[6] 

The crossover operation is applied within the model 
employing a function named crossover(). It accepts 3 
arguments: the oldsters selected previously using the 
select_mating_pool() function, the input image shape 
(img_shape), and therefore the number of offspring to return 
(n_individuals), which defaults to eight[11]. 

The function goes through the ancestors, selecting 2 of them 
for mating and producing an offspring. Then it moves to a 
different 2 parents and repeats the method. 
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4.1.6 Mutation 
 
The mutation operation selects some genes within the 
chromosome then randomly changes their values. 

It’s implemented consistent with the mutation() function 
listed below. It accepts the population returned by the 
crossover() function, number of oldsters , and therefore the 
percent of the genes to be changed. the no. of ancestors is 
passed so as to easily apply the mutation over the offspring 
and skip the oldsters[12]. 

 

Fig -6: Mutation[6] 

4.1.7 Creating an Instance of PyGAD.GA Class 
 
It is vital to use random mutation and set the 
mutation_by_replacement to True. supported the range of 
pixel values, the values assigned to the init_range_low, 
init_range_high, random_mutation_min_val, and 
random_mutation_max_val parameters should be 
changed[13]. 

If the image pixel values range from 0 to 255, then set 
init_range_low and random_mutation_min_val to 0 as they're 
but change init_range_high and random_mutation_max_val to 
255. Then, Simply, call the run() method to run PyGAD. 

5. RESULT & DISCUSSION 
 
5.1 Performed on Low Quality RGB Image 
 
First, we create and shows a plot that summarizes how the 
fitness value evolved by generation on low quality RGB 
Image. It is called after completing at least 1 generation. 

 

Chart -1: Iteration vs Fitness(Low Quality RGB Image) 

As we can see that the fitness value of the best solution, we 
got is 179655.4851110709 & best fitness value reached after 
49997 generations out of 50000 generations. 

 

Fig -7: Generations Comparison(Low Quality RGB Image) 

First, we save the solutions (images) on the memory in order 
to track the progress of the algorithm. The progress of the 
algorithm when applied to a Low Quality RGB image is given 
in the above figure. 

Table -1: SSIM Performance over Generations(Low RGB) 

SSIM Performance Metric 

SSIM after 10K Generations 
0.015210803663310029 

SSIM after 20K Generations 0.019835823501690747 

SSIM after 30K Generations 0.023477062997603257 

SSIM after 40K Generations 
0.02347706299760325 

SSIM after 50K Generations 0.02730847980812102 

 

As we can see that the Structural Similarity Index Measure 
(SSIM) is increasing over the generations for low quality RGB 
Image in the above table. 

 
 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 08 Issue: 04 | Apr 2021                 www.irjet.net                                                                      p-ISSN: 2395-0072 

 

© 2021, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 925 
 

5.2 Performed on High Quality RGB Image 
 
Second, we create and shows a plot that summarizes how the 
fitness value evolved by generation on high quality RGB 
Image. It is called after completing at least 1 generation. 

 

Chart -2: Iteration vs Fitness(High Quality RGB Image) 

As we can see that the fitness value of the best solution, we 
got is 319791.33394319925 & best fitness value reached 
after 49999 generations out of 50000 generations. 

 

Fig -8: Generations Comparison(High Quality RGB Image) 

Second, we save the solutions (images) on the memory in 
order to track the progress of the algorithm. The progress of 
the algorithm when applied to a High Quality RGB image is 
given in the above figure. 

Table -2: SSIM Performance over Generations(High RGB) 

SSIM Performance Metric 

SSIM after 10K Generations 
0.012446354098952955 

SSIM after 20K Generations 0.014665676774561496 

SSIM after 30K Generations 0.016536368946887887 

SSIM after 40K Generations 
0.017748078384999255 

SSIM after 50K Generations 0.018785332391945426 

 

As we can see that the Structural Similarity Index Measure 
(SSIM) is increasing over the generations for high quality 
RGB Image in the above table. 

5.3 Performed on Low Quality B/W Image 
 
Third, we create and shows a plot that summarizes how the 
fitness value evolved by generation on low quality B/W 
Image. It is called after completing at least 1 generation. 

 

Chart -3: Iteration vs Fitness(Low Quality B/W Image) 

As we can see that the fitness value of the best solution, we 
got is 68639.63029713475 & best fitness value reached after 
49999 generations out of 50000 generations. 

 

Fig -9: Generations Comparison(Low Quality B/W Image) 

Third, we save the solutions (images) on the memory in 
order to track the progress of the algorithm. The progress of 
the algorithm when applied to a Low-Quality B/W Image is 
given in the above figure. 

Table -3: SSIM Performance over Generations(Low B/W) 

SSIM Performance Metric 

SSIM after 10K Generations 
0.018704007571078884 

SSIM after 20K Generations 0.021406325260735045 

SSIM after 30K Generations 0.023941404878391997 
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SSIM after 40K Generations 
0.02580501003686182 

SSIM after 50K Generations 0.027722954118421596 

 

As we can see that the Structural Similarity Index Measure 
(SSIM) is increasing over the generations for low quality 
B/W Image in the above table. 

5.4 Performed on High Quality B/W Image 
 
Fourth, we create and shows a plot that summarizes how the 
fitness value evolved by generation on high quality B/W 
Image. It is called after completing at least 1 generation. 

 

Chart -4: Iteration vs Fitness(High Quality B/W Image) 

As we can see that the fitness value of the best solution, we 
got is 319595.73380138964 & best fitness value reached 
after 50000 generations out of 50000 generations. 

 

Fig -10: Generation Comparison(High Quality B/W Image) 

Fourth, we save the solutions (images) on the memory in 
order to track the progress of the algorithm. The progress of 
the algorithm when applied to a High-Quality B/W image is 
given in the above figure. 

 

 

 

Table -4: SSIM Performance over Generations(High B/W) 

SSIM Performance Metric 

SSIM after 10K Generations 
0.012357200191323874 

SSIM after 20K Generations 0.014826052247667526 

SSIM after 30K Generations 0.016706441573328106 

SSIM after 40K Generations 
0.017847103834102082 

SSIM after 50K Generations 0.020847889452754736 

 

As we can see that the Structural Similarity Index Measure 
(SSIM) is increasing over the generations for high quality 
B/W Image in the above table. 

5.5 Comparison of SSIM Index 
 
Here is the line graph showing comparision of Structural 
Similarity Index Measure (SSIM) on all four types of images 
we have iterated over 50,000 generations. 

 

Chart -5: Comparison of SSIM Index 

As we can see that, low quality (RGB & B/W) images are 
giving better SSIM Index value as compare to high quality 
(RGB & B/W) images. So, we can say that our model 
performs best on low quality images & RGB Images. 

6. FUTURE SCOPE 
 
Future work must be mainly concentrated on the 
improvement and efficiency of the model. Like, Other 
methods to generate initial population. Instead of randomly 
generating the initial population, a certain probability may 
be used depending on the neighborhood of the 
corresponding pixels in the noisy image. An alternative 
choice is a threshold image. Other fitness function to 
measure the fitness of the chromosomes. More precise 
measurement may be used instead of just using the 
summation of pixel wise error. Different selection criteria to 
select individuals for the mating pool. After the fitter 
individuals are selected, a small number of randomly 
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selected individuals should be selected to bring more 
diversity into the mating pool.  

At last, Genetic Algorithm is still a developing method in 
digital image processing background. The results obtained 
are very promising and is therefore worth studying further. 
Many improvements can be introduced into the basic 
proposed algorithm for enhancing the computation time of 
the model and accuracy of the results. 

7. CONCLUSION 
 
The final goal of this to develop and study the feasibility of 
an Image Reproducing technique that is based on the Genetic 
Algorithm. In this approach, image reproduction is 
considered as an optimization problem and it is carried out 
using Genetic Algorithms. Genetic algorithms are based on 
the evolution theory also known as "survival of the fittest" 
principle. In Genetic Algorithm, an initial population of 
candidates is required to start the evolution. All these 
individuals are generated based on the problem to be solved. 
In the process of reproduction, the parent selection is used 
before crossover and mutation. After this operation, the 
fitness of all the individuals is evaluated and only the fitter 
candidates are allowed to produce offsprings. The offspring 
so created tend to inherit the "best feature" of their parents. 
Generation after generation, the overall fitness of the entire 
population is improved and finally each individual in the 
population is as good as others in the sense of being the 
fittest individual. And we have done this process on four 
different type of images to compare the performance of our 
model. An exhaustive performance study of the algorithm on 
four different type of images was performed. The parameters 
that affect the performance of the algorithm were studied 
and discussed.  
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