
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 921

Reproducing Images using Genetic Algorithm

Arif Chaudhary1, Harsh Singh2, Hrutuja Saswade3, Dheeraj Jain4, Shiwani Gupta5

1,2,3,4 Student, Dept. of Computer Engineering, Thakur College of Engineering & Technology, Maharashtra, India
5Asst. Professor, Dept. of Computer Engineering, Thakur College of Engineering & Technology, Maharashtra, India
---***---

Abstract - This paper presents a Genetic Algorithm for
reproducing images. The main motto of this image
enhancement is to process the images so that the result is
more suitable than the original image of a specific application.
Image enhancement is used to improve the visual effect and
quality of an image. Input images can have one or more
channels (i.e., the image could be binary, gray, or color, such as
RGB). The Genetic Algorithm (GA) starts from a casual
generated image of the exact shape as the image input. This
casually generated image is developed, using crossover and
alternation, using GA until it produces an image which is
similar to the original image. The same original images might
not be accurately produced, but at least a same image will be
generated. Image enhancement is one of the try and tough
techniques in digital image processing. We willl be performing
this process on four different types of images low quality RGB
& B/W, high quality RGB & B/W & At last comparing the
accuracy of different images by Structural Similarity Index
Measure (SSIM). This paper presents an overview of Genetic
Algorithms for reproducing images.

Key Words: GARI, SSIM, Chromosome, Performance
Comparision, 1D Row Vector, Value Encoding, PyGAD.

1. INTRODUCTION

It is the implementation of Genetic Algorithm functions
which is responsible for reproducing the images. It first
reads a coloured image file named “cherries.jpg”, there in the
project, and then passes them through the function of GA. We
display that image and how it is reproduced by Genetic
Algorithm for Reproducing Images (GARI) after a 50,000-
generation gap. Genetic algorithms find the output space of a
function via simulated evolution, i.e., the survival of the
fittest strategy. Genetic algorithms are shown to decode
linear and nonlinear problems too by searching all regions of
the state space and highly exploiting the promising areas
through different combinations, crossover, and selection
operations applied to the individual in the population, which
is the individual’s solution (analogous to chromosomes) of
the state area. These operators, which are dependent on
probability rules, are put up to the population, and
successive generations are reproduced. Basically, the start of
the search for an optimal solution begins with any randomly
generated population of chromosomes. Each set of
generation will have a newer set of chromosomes founded
from the application of the operators. A fitness, or objective
function, is to be defined related to the problems. The parent
selection process makes sure that the fittest and the bestest

member of the population have the highest probability ratio
of becoming parents, in the thought that their offspring will
come together to desirable features, and have higher fitness,
to both. The algorithms terminate either when the set of
generation numbers is reached, or the fitness has reached a
"good" level. The main use of a Genetic Algorithm to solve
these six major issues: (i) chromosome representation, (ii)
selection function, (iii) creation of the initial population, (iv)
genetic operators making up the reproduction function, (v)
fitness function, and (vi) termination criteria.

2. LITERATURE SURVEY

The related work to reproducing images using Genetic
Algorithm is discussed here, K.D Gupta & Sajib Sen proposed
the method for multi-objective Genetic Algorithm. Their
method will first resize the image using normal image
resizing option provided by operating system or standard
library and attach the extra 2 array of data which contains
number of 1 in main image in each rows and columns. Also,
the total number of 1 in the image will be there too. Now they
will take the help of genetic algorithm which will use this
informations to reproduce the image in original size. From
their result analysis, it seems that if they make a smaller
block, they can produce image faster and more accurate to
original. Also, its seldom that they hit the local optima and
stuck with not good enough version. Changing mutation rate
that time gives them better result. It seems they need to apply
dynamic penalty method and mutation rate to tackle this
issue[1]. Shivangini & Arvind proposed their algorithm
reduce noise reduction of different contrast value images is
98%, with mean=2.60, this can be improved. It is
implemented with noise (different contrast value). De-
noising was carried out with the mean of each noise
reduction[2]. Aravind & Co proposed the image segmentation
system developed by them under the constraint condition,
the foremost being that it performs operation only for
colorless images, there exists room for development in
extending the system to applications in environments
conforming to colored images. Recently, researchers have
investigated the application of Genetic Algorithms into the
color image segmentation problem[3]. M. Yu & Co proposed
knowledge of the object shape, it is difficult to determine the
optimum size of the structuring element. One possible way to
select the suitable structuring element size is to use the edge
characteristic-scale analysis. More extensive studies for
automatic selection of the parameters can be carried out[4].
Sara Hashemi proposed method uses a simple chromosome
structure, Fitness function: In the proposed method, the
number of edges and their overall intensity are used as
fitness value for each chromosome because a gray image with

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 922

good visual contrast includes many intensive edges, Selection
algorithm: Selection of the individuals is done based on the
fitness value of the solutions, Crossover and different
operators: Because of developing individual chromosomes
based on an easy structure[5].

3. PROPOSED ARCHITECTURE

Following steps to follow in order to reproducing an image,
are as follows:

 Read an image
 Prepare the fitness function
 Create an instance of the pygad.GA class with the

appropriate parameters
 Run PyGAD
 Plot results
 Calculate some statistics

Fig -1: Block Diagram

It works with both color and gray images without any
modifications. Just give the image path. Using three
parameters, we can design our own to satisfy our needs. The
parameters are: 1) Population size. i.e., number of
individuals per population. 2) Mating pool size. i.e., Number
of the chosen parents in the mating pool. 3) Mutation
percentage. i.e., number of genes to change their values.
Value encoding used for representing the input. Crossover is
applied by giving half of genes from the two parents. The
changes in the image are applied by randomly changing the
values of randomly selected predefined percent of genes
from the parent’s chromosome. First step in GA is to
represent/encode the input as a sequence of characters. The
encoding used is value encoding by giving each gene in the
chromosome its actual value in the image. Image is
converted into a chromosome by reshaping it as a single row
vector. Creating an initial population randomly. First step in
GA is to represent the input in a sequence of characters. The
encoding used is value encoding by giving each gene in the
chromosome its actual value.

Calculating the fitness of a single solution. The fitness is
basically calculated using the sum of absolute difference
between genes values in the original and reproduced
chromosomes. Then population fitness calculates the fitness
of all solutions in the population.

selects the best individuals in the current generation,
according to the number of parents specified, for mating and
generating a new better population. Then applying crossover

operation to the set of currently selected parents to create a
new generation. Applying mutation by selecting a predefined
percent of genes randomly. Values of the randomly selected
genes are changed randomly.

Saving the best solution in a given generation as an image in
the specified directory. Image is saved according to the stop
point to make sure the stop saves images from all
generations as saving many images will make the algorithm
work slow. Show all individuals as images in a single graph.

4. PROPOSED MODEL

4.1 Implementation

Genetic algorithms are a random-based enhancement
technique that has a number of generic processes that are
normally followed to solve any enhanced problem. These
processes are then made by choice to the problem being
solved[7]. This paper discusses these processes in deep but
focuses on how to modify them according to this model. The
summary of these steps is as follows:

4.1.1 Data Representation (Read an Image)

The first task for an image problem using Genetic algorithm
is to ponder about the finest way to showcase the data.
Genetic algorithm trusts the chromosome (i.e., solution) as a
1D row vector. The input image will not be 1D. The image
might be in 2D if it’s a binary or a gray image.

There might be 2 or more than 2 dimensions if the input
image is colour. If it’s RGB, for eg, then there are three
dimensions, one for every channel. Any data of greater than
1 dimension must be represented in a 1D vector. Is it
possible that we convert the MD data to a 1D vector ?

Going with the easy case in which the input is a 2D image
(i.e., 2D matrix), changing it into a 1D vector needs us to mix
the 2 dimensions into a one dimension. The matrix has n
number of rows, and its compulsory to mix all of these rows
into one’s row[8]. This can be done by stacking the multiple
rows together. This is illustrated in the figure 3 & 4. The
figure shows how an image/matrix of 3 rows and 3 columns.
That’s a total of 3x3=9 elements.

Fig -2: Input Image

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 923

When converting to a 1D vector, the vector length will
obviously be 9. The first three figures of this vector will be
chosen from the first row in the image. The next three
elements of the vector will be chosen from the second row,
and lastly the last three elements in the vector will be taken
from the last row.

Fig -3: 2D Image into 1D Vector[6]

Fig -4: 3D Image into 1D Vector[6]

While converting the MD data to a 1D vector is the last step
for representing the data of this model, but it may not be the
last tread for other similar problems. In this model, value
encoding is used. The similar values in the image are used in
the chromosome. In the other problems, it may prefer to
encode the values in different ways. In this particular case,
there is an encoding step between the original form of the
data and the chromosome.

4.1.2 Initializing Population

GA starts an initial population, which may be a group of
solutions (chromosomes) to the given problem. These
solutions are randomly generated. A function named
initial_population() is created to return such a population.[9]

Without even looking at the function arguments, let’s think
about what arguments are expected to be passed to it. In
beginning, a chromosome (1D vector) is to be created. The
vector length is almost same to the number of objects in the
image. Thus, there must be an argument to assist in
calculating this length. This is why the function accepts the
form of the image because the first argument named
img_shape.

4.1.3 Fitness Calculation

The next thing is to create a function which will be used as a
fitness function for calculating the fitness value for every
solution within the population. This function must be a
maximization function that accepts 2 parameters
representing an answer and its index. It returns a value
representing the fitness value.

The fitness value is calculated using the sum of absolute
difference between genes values within the original and
reproduced chromosomes. The gari.img2chromosome()
function is named before the fitness function to represent
the image as a vector because the Genetic Algorithm can
work with 1D chromosomes.

After calculating the fitness values for all the possible
solutions, the very next step is to select the perfect one of
them for making the next population. The best of these
solutions is called parents. By mating these parents, the
think for a return is good solutions (offspring).

4.1.4 Parent Selection

The parents selected from a given population are the
simplest solutions within it. once we say “best solutions”,
we’re pertaining to the solutions with the very best fitness
values.

Assume that the population has 6 solutions and their fitness
values are as given within the figure below. Before selecting
the simplest parents, we'd like to make a decision what
percentage parents to pick . Assuming that half (3 out of 6) of
the solutions are going to be selected, then the simplest 3
solutions are those with the very best fitness values. This is
why we need the solutions with ID 4, 2, and 6 are
selected[10].

4.1.5 Crossover

Mating two organisms has a meaning of creating a fresh
offspring that shares the genes inside both of them. The
crossover operation selects a number of genes from each
parent and places them into their offspring.

Fig -5: Crossover[6]

The crossover operation is applied within the model
employing a function named crossover(). It accepts 3
arguments: the oldsters selected previously using the
select_mating_pool() function, the input image shape
(img_shape), and therefore the number of offspring to return
(n_individuals), which defaults to eight[11].

The function goes through the ancestors, selecting 2 of them
for mating and producing an offspring. Then it moves to a
different 2 parents and repeats the method.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 924

4.1.6 Mutation

The mutation operation selects some genes within the
chromosome then randomly changes their values.

It’s implemented consistent with the mutation() function
listed below. It accepts the population returned by the
crossover() function, number of oldsters , and therefore the
percent of the genes to be changed. the no. of ancestors is
passed so as to easily apply the mutation over the offspring
and skip the oldsters[12].

Fig -6: Mutation[6]

4.1.7 Creating an Instance of PyGAD.GA Class

It is vital to use random mutation and set the
mutation_by_replacement to True. supported the range of
pixel values, the values assigned to the init_range_low,
init_range_high, random_mutation_min_val, and
random_mutation_max_val parameters should be
changed[13].

If the image pixel values range from 0 to 255, then set
init_range_low and random_mutation_min_val to 0 as they're
but change init_range_high and random_mutation_max_val to
255. Then, Simply, call the run() method to run PyGAD.

5. RESULT & DISCUSSION

5.1 Performed on Low Quality RGB Image

First, we create and shows a plot that summarizes how the
fitness value evolved by generation on low quality RGB
Image. It is called after completing at least 1 generation.

Chart -1: Iteration vs Fitness(Low Quality RGB Image)

As we can see that the fitness value of the best solution, we
got is 179655.4851110709 & best fitness value reached after
49997 generations out of 50000 generations.

Fig -7: Generations Comparison(Low Quality RGB Image)

First, we save the solutions (images) on the memory in order
to track the progress of the algorithm. The progress of the
algorithm when applied to a Low Quality RGB image is given
in the above figure.

Table -1: SSIM Performance over Generations(Low RGB)

SSIM Performance Metric

SSIM after 10K Generations
0.015210803663310029

SSIM after 20K Generations 0.019835823501690747

SSIM after 30K Generations 0.023477062997603257

SSIM after 40K Generations
0.02347706299760325

SSIM after 50K Generations 0.02730847980812102

As we can see that the Structural Similarity Index Measure
(SSIM) is increasing over the generations for low quality RGB
Image in the above table.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 925

5.2 Performed on High Quality RGB Image

Second, we create and shows a plot that summarizes how the
fitness value evolved by generation on high quality RGB
Image. It is called after completing at least 1 generation.

Chart -2: Iteration vs Fitness(High Quality RGB Image)

As we can see that the fitness value of the best solution, we
got is 319791.33394319925 & best fitness value reached
after 49999 generations out of 50000 generations.

Fig -8: Generations Comparison(High Quality RGB Image)

Second, we save the solutions (images) on the memory in
order to track the progress of the algorithm. The progress of
the algorithm when applied to a High Quality RGB image is
given in the above figure.

Table -2: SSIM Performance over Generations(High RGB)

SSIM Performance Metric

SSIM after 10K Generations
0.012446354098952955

SSIM after 20K Generations 0.014665676774561496

SSIM after 30K Generations 0.016536368946887887

SSIM after 40K Generations
0.017748078384999255

SSIM after 50K Generations 0.018785332391945426

As we can see that the Structural Similarity Index Measure
(SSIM) is increasing over the generations for high quality
RGB Image in the above table.

5.3 Performed on Low Quality B/W Image

Third, we create and shows a plot that summarizes how the
fitness value evolved by generation on low quality B/W
Image. It is called after completing at least 1 generation.

Chart -3: Iteration vs Fitness(Low Quality B/W Image)

As we can see that the fitness value of the best solution, we
got is 68639.63029713475 & best fitness value reached after
49999 generations out of 50000 generations.

Fig -9: Generations Comparison(Low Quality B/W Image)

Third, we save the solutions (images) on the memory in
order to track the progress of the algorithm. The progress of
the algorithm when applied to a Low-Quality B/W Image is
given in the above figure.

Table -3: SSIM Performance over Generations(Low B/W)

SSIM Performance Metric

SSIM after 10K Generations
0.018704007571078884

SSIM after 20K Generations 0.021406325260735045

SSIM after 30K Generations 0.023941404878391997

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 926

SSIM after 40K Generations
0.02580501003686182

SSIM after 50K Generations 0.027722954118421596

As we can see that the Structural Similarity Index Measure
(SSIM) is increasing over the generations for low quality
B/W Image in the above table.

5.4 Performed on High Quality B/W Image

Fourth, we create and shows a plot that summarizes how the
fitness value evolved by generation on high quality B/W
Image. It is called after completing at least 1 generation.

Chart -4: Iteration vs Fitness(High Quality B/W Image)

As we can see that the fitness value of the best solution, we
got is 319595.73380138964 & best fitness value reached
after 50000 generations out of 50000 generations.

Fig -10: Generation Comparison(High Quality B/W Image)

Fourth, we save the solutions (images) on the memory in
order to track the progress of the algorithm. The progress of
the algorithm when applied to a High-Quality B/W image is
given in the above figure.

Table -4: SSIM Performance over Generations(High B/W)

SSIM Performance Metric

SSIM after 10K Generations
0.012357200191323874

SSIM after 20K Generations 0.014826052247667526

SSIM after 30K Generations 0.016706441573328106

SSIM after 40K Generations
0.017847103834102082

SSIM after 50K Generations 0.020847889452754736

As we can see that the Structural Similarity Index Measure
(SSIM) is increasing over the generations for high quality
B/W Image in the above table.

5.5 Comparison of SSIM Index

Here is the line graph showing comparision of Structural
Similarity Index Measure (SSIM) on all four types of images
we have iterated over 50,000 generations.

Chart -5: Comparison of SSIM Index

As we can see that, low quality (RGB & B/W) images are
giving better SSIM Index value as compare to high quality
(RGB & B/W) images. So, we can say that our model
performs best on low quality images & RGB Images.

6. FUTURE SCOPE

Future work must be mainly concentrated on the
improvement and efficiency of the model. Like, Other
methods to generate initial population. Instead of randomly
generating the initial population, a certain probability may
be used depending on the neighborhood of the
corresponding pixels in the noisy image. An alternative
choice is a threshold image. Other fitness function to
measure the fitness of the chromosomes. More precise
measurement may be used instead of just using the
summation of pixel wise error. Different selection criteria to
select individuals for the mating pool. After the fitter
individuals are selected, a small number of randomly

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 04 | Apr 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 927

selected individuals should be selected to bring more
diversity into the mating pool.

At last, Genetic Algorithm is still a developing method in
digital image processing background. The results obtained
are very promising and is therefore worth studying further.
Many improvements can be introduced into the basic
proposed algorithm for enhancing the computation time of
the model and accuracy of the results.

7. CONCLUSION

The final goal of this to develop and study the feasibility of
an Image Reproducing technique that is based on the Genetic
Algorithm. In this approach, image reproduction is
considered as an optimization problem and it is carried out
using Genetic Algorithms. Genetic algorithms are based on
the evolution theory also known as "survival of the fittest"
principle. In Genetic Algorithm, an initial population of
candidates is required to start the evolution. All these
individuals are generated based on the problem to be solved.
In the process of reproduction, the parent selection is used
before crossover and mutation. After this operation, the
fitness of all the individuals is evaluated and only the fitter
candidates are allowed to produce offsprings. The offspring
so created tend to inherit the "best feature" of their parents.
Generation after generation, the overall fitness of the entire
population is improved and finally each individual in the
population is as good as others in the sense of being the
fittest individual. And we have done this process on four
different type of images to compare the performance of our
model. An exhaustive performance study of the algorithm on
four different type of images was performed. The parameters
that affect the performance of the algorithm were studied
and discussed.

REFERENCES

[1] K.D Gupta & Sajib Sen,(2018) “A genetic algorithm

approach to regenerate image from a reduce scaled
image using bit data count,” ResearchGate.

[2] S. Shrivastava & A. Upadhyay, (2014) “Image
enhancement using genetic algorithm,” IJERT.

[3] I. Aravind, C. Chandra, M. Guruprasad, P.S. Dev, R.D.S.
Samuel, (2003) “Implementation of image segmentation
and reconstruction using genetic algorithms,” IEEE.

[4] M. Yu, N. Eua-anant, A. Saudagar, L. Udpa, (2002)
“Genetic algorithm approach to image segmentation
using morphological operations,” IEEE.

[5] Sara Hashemi, Soehila Kiani, Navid Noroozi, Mohsen
Ebrahimi Moghaddam, (2009) “An image enhancement
method based on genetic algorithm,” IEEE.

[6] Ahmed Gad, (2019) “Reproducing images using a genetic
algorithm with python,” Heartbeat Article.

[7] Ahmed Gad, (2019) “Introduction to optimization with
genetic algorithm,” KDNuggets.

[8] MIT License, (2018) “GARI python library,” Pypi GARI.

[9] GeneticAlgorithmPython, (2021) “PyGAD python
library,” Pypi PyGAD.

[10] Ahmed Fawzy Gad, (2020) “5 Genetic Algorithm
Applications Using PyGAD,” Paperspace.

[11] Dana, Machine learning optimization using genetic
algorithm, Architect and Industrial Engineer: Udemy
Instructor, 2017.

[12] Thomas M. Wolfley, Genetic programming for image
compression, Master of Science: University of California,
Los Angeles, 2010.

[13] Tao Wu, The Journal. Image-Guided rendering with an
evolutionary algorithm based on cloud model: Volume
2018, doi:10.1155/2018/4518265.

BIOGRAPHIES
 Arif Chaudhary is pursuing B.E. in

Computer Engineering. He has done
various projects in this area like movie
recommendation system, real time face
recognition. His area of interest includes
Machine Learning, Artificial Intelligence.

Harsh Singh is pursuing B.E. in
Computer Engineering. He has done
various projects in this area like movie
recommendation system, real time face
recognition. His area of interest includes
Machine Learning, Artificial Intelligence.

Hrutuja Saswade is pursuing B.E. in
Computer Engineering. She has done
various projects in this area like movie
recommendation system, real time face
recognition. Her area of interest includes
Machine Learning, Artificial Intelligence.

Deeraj Jain is pursuing B.E. in Computer
Engineering. He has done various
projects in this area like intelligent face
mask. His area of interest includes
Artificial Intelligence.

Shiwani Gupta is pursuing Ph.D. in
Technology and holds a M.Tech and
B.Tech degree. She has around 70
publications in various journals and
conferences. Her area of interest
includes Machine Learning, Artificial
Intelligence and Algorithms.

