

PARAMATRIC STUDY ON PERFORNMANCE OF CYLINDRICAL WATER TANK WITH DIFFERENT STAGING CONFIGURATIONS

Parth A. Modi¹, Aakash Suthar², Abbas jamani³

¹P. G. Student, Department of Civil Engineering, L.J.I.E.T., Gujarat Technological University ²Assitant Professor, Department of Civil Engineering, L.J.I.E.T., Gujarat Technological University ***

Abstract - Seismic forces are very harmful to damage or completely destroy RCC water tank. We all are aware about hysterics loading compression and tension which show loop on the graph and these can be effectively resist by horizontal buckling resist braces. For analysis of hysistraces seismic effect and resist capacity of BRBs in staging water tank the behavior of Elavated water tank compare with ordinary water tank. The time history method can be applied to the model. The mode displacement is acquired by modeling the structure in the structure analysis software. The main aim was to compare the modify structure with the ordinary structure. Parameter has help in comparisons of this model. There was significant decrease of time period of EWT with BRBs and Base shear also get decrease this was a good sign for the thesis. To study various literatures available related to Elevated water tank. Guidelines from IS 1893 part-1, IS 1893 Part-2, IS 3370, IS 456, IS 11682, IS 875 will be followed during the procedure. To Study performance of Elevated water tank with different lateral load resisting system. Structural engineering software ETAB will be used to find out the stiffness of the model. *Computer program will be prepared for seismic analysis using* the MS-Excel. Formulae and values for various parameters will be taken from IS1893 (part 2):2014. Each model will be analyzed for tank full condition, partially filled and tank empty condition. To compare the analysis results in terms of base moment and base shear.18 Lac liter E.S.R cylindrical type of water tank is considered to be situated in BHUJ-Seismic Zone V, water tank is considered to be resting on Medium type soil, water tank is considered as SMRF. Concrete M-25, Steel Fe-415.Total 25 models will be made and each model would be analyzed for full tank, partially filled tank and empty tank condition.

Kev Words: Bhuj, BRB, Base shear, Base moment, Time period, Seismic Zone V, Software ETABS, Time history analysis, Seismic response parameters.

1. INTRODUCTION

Water tank are used to store water for daily requirement of the human being. Water is life line for every kind of creature in this world. These are in turn has led to the increase in the construction of steel towers of various configurations and heights. To the secure constant water supply from longer distance with sufficient static head to desire location under the effect of gravitational force, the elevated water tanks are necessary. The cost and expenditure of steel water tank is

more as compare to other material water tanks and so they are infrequently used for water tanks. Now days seismic efficient structure is priority of designing. Elevated water tank is vulnerable earthquake because of behave like an inverted pendulum. Such type of RCC staging water tank has less ductility to resist the inertia force generate to wt. of water tank. The make staging efficient to absorb the seismic load proper system should be used in staging. BRBs might be one of the good element to fix the staging to decrease the base shear, displacement, time history, etc.. Many existing water tank do not meet the seismic strength require for resisting the lateral load. Seismic forces are very harmful to damage and completely collapse the RCC water tank. We are know that the hysteresis loading compression or tension show the graph and these can be efficiently resist by BRBs. The analysis of hysteresis seismic effect or resistance capacity of BRB in staging water tank. The behavior of Elevated water tank with BRB should be compare with ordinary staging water tank. The time history method is good method can be applied to the models. The mode displacement is acquired by modeling the structure analysis software. The main aim to compare the modified structure with ordinary structures. Time history, base shear, etc... Parameters are help in comparison of these models. There are significant decreases of time period of elevated water tank with BRB and base shear also get decrease these are a good sign for the thesis. Steel is tending to buckling effect in brace due to not good performance on compressive load. These are the buckling is not good for these type structure. Various techniques used for seismic strengthening of water tank. BRB are one of the best techniques which can be used in the staging for efficiently control the seismic effect on horizontal member. Somewhere BRB also increase lateral stiffness of elevated water tank. BRB have very good performance in cyclic loading or hysteresis loop the displacement is in control.

International Research Journal of Engineering and Technology (IRJET)e-ISSN: 2395-0056Volume: 08 Issue: 04 | Apr 2021www.irjet.netp-ISSN: 2395-0072

Fig -1: Image of the damaged water tank staging

2. LITERATURE REVIEW

S.C. Duttaa, S.K. Jainb, C.V.R. Murtyb [2000] [1]:

In this Former three of the above mention pattern have greater value of the above mentioned patterns have greater value of co relation of torsion and lateral natural period although the fourth pattern has a lower then when compare with that of primary pattern. The magnitude and direction of eccentricity for elevated water tank is generally unknown pattern base result may be preferred to the standard increased strength design.

T. Takeuchi, J.F.Hajjar, R. Matsui, K. Nishimoto, I.D. Aiken [2012] [2]:

Local buckling failure are observed in specimens possessing rectangular tube with a width to thickness ratio 65 and 76.The initiation of local buckling failure started later as the mortar thickness is increase and the effect of the mortar thickness was observed. The criteria for the local buckling failure of BRBs can be modifying by the mortar thickness and restraint tube shape. The revise criteria improve the ability to predict local buckling failure in BRBs. With circular restraint tube local buckling failure did not occur until the core plate plastic strain amplitude was 3% even for the large diameter to thickness ratios of the tube.

Mr Santosh Rathod, Prof. M. B. Ishwarago [2018] [3]:

The bending moment value has slightly increased due to increase in supporting staging height and wind load on the water tank. The base shear value has in significantly increased due to increase in supporting staging height. It is reviewed that as the height of cylindrical wall reduces and base width increase the value of base shear drastically increase. The value of displacement has highly increased due to reduce height of cylindrical wall and increase in base width.

Hamdy Abou-Elfath, Mostafa Ramadan, Fozeya Omar Alkanai [2016] [4]:

The base shear capacity were increase by 149% which were the same original buckling which shows that BRB is an efficient method to solve the problem of base shear. In the current study an increase in the base shear capacity up to 150% from the base shear capacity of the original RC building has been achieved by the barbs. Storey drift was significantly decrease by the use of BRB. The PGA capacity of brace of S1 S2 S3 was 42 82 147% which was considerable increase than original frame. Bracing of the perimeter frame imposes significant axial force demand on the columns and foundation of the brace bay which requires cross sectional enlargement of columns and strengthening of the foundation.

Soheil Soroushnia, Sh. Tavousi Tafreshi, F. Omidinasab, N. Beheshtian, Sajad Soroushnia [2011] [5]:

It specified that the failure modes of reinforcement concrete elevated tanks with frame staging are shear and bending modes in beams axial modes in columns cracks in joint and torsion mode. It was determine which failures modes of shear force in beams and also find the failure mode of axial force are dominate in the reservoir. The results showed that there is a good implementation of numerical studies with the field studies.

Manish N. Gandhi, Ancy Rajan [2016] [6]:

Parametric study is carried out by using different patterns of bracing in staging of an elevated water tank. Base shear for different bracing pattern is clear that the base shear value reduces for alternate bracing pattern in staging. This is apparent because of the reduction of overall stiffness of the structure.

From the observation made above it can be conclude that cross bracing in staging most effective in reducing displacement due to lateral loading reduce displacement effectively by 81.09% in X direction and 92.98% in Z direction from that of structure without bracing.

From the compare between displacement for different bracing system and displacement for the different alternate bracing. It is conclude that the cross bracing pattern gives the minimum value of displacement.

International Research Journal of Engineering and Technology (IRJET) Volume: 08 Issue: 04 | Apr 2021 www.irjet.net

3. RESEARCH GAP

According to the literature reviewed till now, following research gaps can be noted:

- From the literature review it can be clearly seen that horizontal BRB configuration can give greater structural benefits than vertical bracing configuration.
- From the literature review it can be clearly seen that no work is carried out for horizontal BRB configuration.
- Considering this research gap, present study aims to Study on behavior of Cylindrical Water Tank with Different Lateral Load Resisting Structural Systems.
- The aim is also to study various structural parameters like base shear and base moment.

4. OBJECTIVE

The objective of this work is as follows:

- To Study the various effect on performance of water 1 tank having Different pattern with BRB under different height using different bracing configuration system.
- 2. To study the various effects on performance of Elevated water tank with different horizontal BRB configuration of bracing system.
- 3. To analysis of the performance of bracing in staging in zone5.
- To observe the base shear of staging with different 4. configuration.
- To observe the Bhuj earthquake data and apply the 5. time history analysis in ETAB software and note the displacement.
- To compare the analysis results in terms of time 6. period, base shear and base moment.
- To Analyze the Stiffness, Story displacement, Base 7. shear, Base moment, Time period and Time history function.
- Proposing the various configurations which have batter 8. performance.

5. METHODOLOGY

There are three pattern suggest 1) Octagon in Octagon tube 2) Hexagon in Octagon tube 3) Square in Octagon tube.

The staging height is different but earthquake zone are remaining same. The staging height is 1)4.3m 2)5.0m 3)5.5m Calculation of C.G of 3(three) Condition is calculated in excel sheet. Modeling and stiffness will be calculating using ETAB structure software. Core area of BRB will be calculate by story nodal shear force at different level in decreasing order of shear by formula in MS Excel sheet. The comparison between various configurations will be done by calculating

base shear, base moment, Time period, Time history function.

6. MODEL DATA

The data for project model is taken as follows:

- Design of Cylindrical tank = 18, 00,000 litres.
- Thickness of top dome = 120mm. •
- Thickness of Bottom dome = 200mm. •
- Size of Top Ring beam = 230mmX300mm.
- Size of Bottom Ring Beam = 450mmX300mm.
- Density of Concrete = 25KN/m³.
- Diameter of Bottom Dome= 13.865m.
- Diameter of tank (D) =20m. (from calculation)
- Height of cylindrical wall= 6m.

	LOAD CALCULA	TION (OF CYLIN	DRICAL	WATE	R TANK OF	CAPACITY 1800000 litro	es	
								Capacity	18000
1	Dia of Top Dome	(D)	20	m			radii. Of top dom	10	
2	Dia of Bottom Dome	(d)	13.86	m			radii. Of bottom dom	6.93	
3	Height of Cylindrical	wall	6	m					
4	Thickness of Top Dom	ie	0.12	m					
5	Thickness of Bottom I	Dome	0.2	m					
6	Thickness of Cylindric	al Wall	0.2	m					
7	Size of Top Ring Bean	ı	0.23	0.3	m		0.3		
8	Size of Bottom Ring B	Size of Bottom Ring Beam		0.3	m		0.3		
9	Dome Height		1.5	m					
	Density of Concrete		25	KN/m³					
	Size of Octagone		20	m					
	Radius of Top Dome	(R)	[(<i>r</i> ² /dom	e height)+	domeheig	;ht]/2	34.08333333	m	
	Radius of Bottom Dor	r (r)	$[(r^2/dom$	e height)+	domeheiį	ght]/2	16.7583	m	

Table-1 Dimension of water tank

в	C	D	E	F	G	H	1	J.
SN	Description				Parameter	Value	Unit	Refer
1	Total Mass	of Water		Weight	m	17,65,800	kg	2.1
				Volume		1,766	ma	
2	Inner Diame	eter of Tank a	at Top		D	20.000	m	definition, P-6
3	Equivalent I	Height of tan	k = V / (π I	D ² /4) =	h	5.621	m	CI.4.2.3, P-10
4	Ratio D / h				D/h	3.558		
					0.866 D/h	3.081		
	Ratio h / D				h/D	0.281	< 0.75	
					3.68 h/D	1.034		
5	IMPULSIVE	MASS :			m,			
а	m/m = { 0.2	23 tanh(3.68	h/D) / (h/I	>) } =	m, / m	0.323		Table C-1
	Hence valu	e of impulsiv	e mass m	h =	m	5,70,632	ka	
b	= 0.375 for h/l	t of impulsive n ⊃≤0.75 5°D/h for h/D >		al Ht. h;/h	h _i / h	0.375		
	(h; is not use	d in computing	period of vil	bration,T)	h	2.108	m	
c	hi*/h = (0.866	r checking ove D/h) / (2tanh(0. r h/D > 1.33 (mi	866D/h)} - 0	.125	h _i * / h	1.422		
	Hence valu	e of h,* =			h, *	7.994	m	
6	CONVECTO							
a	$m_c/m = 0.2$	23 * tanh(3.	68h/D) / ((h/D) -	m_c / m	0.635		Table C-1
	Hence Val	ue of Conve	ective Ma	SS m. =	m	11,20,833	kg	
	Check Sum	of Convecti	ve Mass &	Impulsive M	ass =	16,91,465	= 95.79 % o	f total mass
ь		f Convective N h/D) -1} / <u> 3.68</u> 1			\mathbf{h}_{c} / \mathbf{h}	0.540		Table C-1
	Value of h	=			h	3.04	m	
c	(h." is used fo ho"/h = sinh[3,68h/d]	or checking ov 1-[{cosh(3.68]			h, * / h	1.335		Table C-1
	Hence valu	e of he* =			h. *	7 504	m	

T Volume: 08 Issue: 04 | Apr 2021

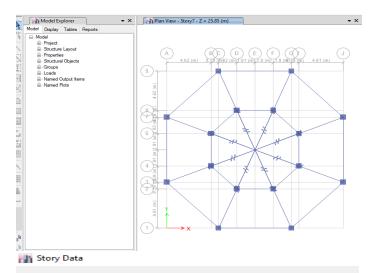
www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Selfwe	eight ca	alculation of	Members			
1 Top Dome		2πR*Thickness	of Top Dome*Dome	eheight*25	963.195	
2 Top Ring B		∏D*size of top	ring beam \$25		107.409195	
2 TOP KING BI	eam	IID size of top	ring beam 25		107.409195	
3 Cylindrical	Wall	[πDt]*h*25			1884	
4 Bottom Do	me	2πr * Thicknes	s of Bottom Dom	e * dome height * 25	789.31593	
5 Bottom Rin	ig Beam	∏D*size of Bott	om ring beam*25		212.479875	
6 Conical Do	me	∏*(D+d)/2*Lc*c	dome thickness*25		576.78817	
				TOTAL SW	4500 40047	
				TOTALSW	4533.18817	

Table-2 Self Weight of members

	Weight of W	ater					
	Capacity of Tank		1800000	litres		1800	m ³
	Density of Water		9.81	KN/m3			
	Weight of Water		1800*9.8	1		17658	KN
	Area of octa	gone					
	Area of octagone	(A)	1931.37	m²			
	Staging Calcu	ulations					
		size		height		Vol (m3)	Weight(KN)
1	Column Size	0.6	0.6	27.2	m	9.792	24
,	Brace (m)	0.3	0.6				


Table-3 Staging calculation

	CG of empty co	ntainer		
		Weight(KN)	height	
1	Top Dome	963.195	9.425	9078.112875
2	Top Ring Beam	107.409	7.95	853.9031003
3	Cylindrical Wall	1884	4.8	9043.2
4	Bottom Dome	789.316	0.95	749.8501335
5	Bottom Ring Beam	212.48	1.65	350.5917938
6	Conical Dome	576.788	1	576.78817
		4533.19		20652.44607
		CG OF EMPTY CC	NTAINER	4.555832517

Table-4 CG of empty container

	CG of full contai	iner			
		Weight(KN)	height		
1	Top Dome	963.195	9.425	9078.112875	
2	Top Ring Beam	107.409	7.95	853.9031003	
3	Cylindrical Wall	1884	4.8	9043.2	
4	Bottom Dome	789.316	0.95	749.8501335	
5	Bottom Ring Beam	212.48	1.65	350.5917938	
6	Conical Dome	576.788	1	576.78817	
7	Water	17658	4.65	82109.7	
		22191.2		102762.1461	
		CG OF FULL CON	TAINER	4.630763584	

Table-5 CG of Full container

	Story	Height m	Elevation m
▶	Story7	4.55	25.85
	Story6	4.3	21.3
	Story5	4.3	17
	Story4	4.3	12.7
	Story3	4.3	8.4
	Story2	4.3	4.1
	Story1	2.8	-0.2
	Base		-3

Table-6 Dimension of Plan & staging height

International Research Journal of Engineering and Technology (IRJET) e-ISS

IRJET Volume: 08 Issue: 04 | Apr 2021

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

I –		For octage	onal Tub	e in Tub	e				
				No		Total			
	1	Column load		16	244.8	3916.8	KN		
	2	Brace							
	-	Didte	size	no	length		TOTAL(KN	0	
		i	300X600	40	7.65		1377	.,	
		ii .	300X600	40	3.82		687.6		
							2064.6	KN	
							2004.0	NN	
2.4	SEISM	IC LOADS :		Total			5981.4	KN	
		IC MASS at	C.G. of C	ontainer :					
						Tank Empty		Tank FULL	
	1	Self Wt.				453		453	tonnes
	2	Water						1,766	tonnes
	3	STAGING	Т	otal Load	598				
		Se	eismic Lo	oad = W/3	199	199		199	
						653			tonnes

Table-7 Octagonal tube & Seismic load calculation

2	STIFFNE	SS of STAGI	IG:						
	F	or evaluating S	eismic Force	es, it is ne	cessary to	evaluate P	eriod of Vib	ration of the	e system,
2.4.3		ATION OF ST						d for purpo	se of analysi
	A	After generating	g the geomet	rical mode	l for shaft o	r staging ir	any Softw	are based	on Finite
	For evaluation	ating stiffness	of a structure	e of given g	jeometry, a	in arbitrary	unit load (S	Say 100 t) i	s applied at t
					TANK Co	ondition \rightarrow	FULL	EMPTY	
				Horizon	tal Force a	pplied, W =	= 100.00		5 tonne
			Average dis	placement	at Top of S	Staging δ ₁ =			0 mm
						otation θ_1 =			1 radian
					om Top of				
		Average	displacemen						0 mm
			Stiffnes	ss of the structure = W / δ ₂ = 'k' = Stiffness of the structure, 'k' =					3 kg/mm 6 kg/cm
	The dif	ference betwee	n two values						kg/cm
				1					
			4.3m						
As the	height of diffe	rent storeys vary, t	ne stiffness of wh	ole trestle is w	/orked out as u	nder.			
	height of diffe	rent storeys vary, ti Foundn to Brace-					BR5	BR6	br6 to con
Storey	-						BR5 3.7	BR6 3.7	br6 to con 10.15
Storey	-	Foundn to Brace-	1 Brace-1 to Bra	Brace-2 to Bra	Brace-3 to Bra 3.7	Brace-4 to Cor			
Storey Storey	-	Foundn to Brace- 7.3 730	1 Brace-1 to Bra 3.7	Brace-2 to Bra 3.7	Brace-3 to Bra 3.7	Brace-4 to Cor 3.7	3.7	3.7	10.15
Storey Storey Columi	Height	Foundn to Brace- 7.3 730 8328.68486	1 Brace-1 to Bra 3.7 370	Brace-2 to Bra 3.7 370 63964.622	Brace-3 to Bra 3.7 370 63964.622	Brace-4 to Cor 3.7 370 63964.622	3.7 370 63964.622	3.7 370	10.15 1015
Storey Storey Colum Storey	Height n Stiffness, Kc	Foundn to Brace- 7.3 730 8328.68486 199888.4368	1 Brace-1 to Bra 3.7 370 6396.4622	Brace-2 to Bra 3.7 370 63964.622	Brace-3 to Bra 3.7 370 63964.622	Brace-4 to Cor 3.7 370 63964.622	3.7 370 63964.622	3.7 370 63964.622	10.15 1015 3,098
Storey Storey Colum Storey Storey	Height n Stiffness, Kc Stiffness Ks =	Foundn to Brace- 7.3 730 8328.68486 199888.4368 5.00279E-06	Brace-1 to Bra 3.7 370 6396.4622 153515.093	Brace-2 to Bra 3.7 370 63964.622 1535150.93	Brace-3 to Bra 3.7 370 63964.622 1535150.93 6.514E-07	Brace-4 to Cor 3.7 370 63964.622 1535150.93	3.7 370 63964.622 1535150.93 6.514E-07	3.7 370 63964.622 1535150.93	10.15 1015 3,098 74,363

	Adopting value of K =	43,069 kg/cm		20,048
	Period of Vibration, T = 2 p V (W	V/Kg) = V (W) / {V(Kg) / 2p}		
Substi	tuting Value of K =49,009 kg/cm and	d g = 981 cm/sec², {V (Kg) /	2π}=	1034.51601
	eriod of Vibration, T V W / 103	4 seconds		

Table -8 Stiffness Calculation with FEM Software

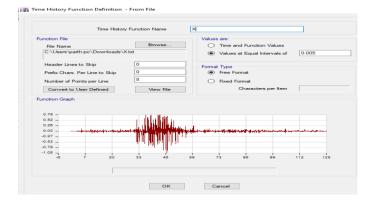
SEISMIC	FORCES	:						
1		Zone	Factor, Z =	0.36	for Zone	V		
2		Importance	e Factor I =	1.50				Table:6, Part-1
3	Respons	e Reduction I	Factor, R =	2.50	SMRF			Table:2, Part-2
4	Seismic	Coef. α _h = ZI/2	R x Sa/g =	0.108	x S _a / g			Cl.6.4.2, Part-1
					Tank Empty		Tank	
							FULL	
1	Equivalen	t Load at C.G.			624		2,390	tonnes
2	Period of \	/ibration, T =	√W/1,10	04	0.76	0.76		sec.
3	Value of S	a/g from Fig.2	of IS:1893	-2002				
		for medium s	oils, apply	ing formula,	1.78		0.97	ratio
4	Seismic C	oef. α _h =			0.192		0.105	
5	Seismic F	orce = α _h x W	=		120.021		250.568	tonnes
6	Level of Fo	orce			16.410		16.600	m
7	Lever Arm	from C/L of R	aft-Beam		18.410		18.600	m
8	Moment o	n Foundation			2,210		4,661	t-m

Table -9 Seismic force

А	IMPULSIVE MASS :					
	Self Weight of	Container, m ₁ =	4,53,000	kg		2.1
	1/3 Weight	of Staging, m _s =	1,71,000	kg		2.1
	Impulsive mas	s of water, m; =	0	kg		2.5.1.5a
	Total Impul	sive Mass M _i =	6,24,000	kg		
	Stiffnes	s of Trestle, K =	20,048	kg/cm		2.4.3
		$T_i = 2 \pi V M_i / K_i =$	1.12	seconds		
	Spectral Acc. Coef. fr	rom Curve, S _a /g =	1.22			Fig.2, Part-
		Zone Factor, Z =	0.36	for Zone	v	
	Impo	rtance Factor I =	1.50			Table:6, Part-
	Response Redu	uction Factor, R =	4.00	SMRF		Table:2,Part-2
	Seismic Coef. a.	= ZI/2R x S_/g =	0.0675	x S _a / g =	0.0820	CI.6.4.2,Part-1
	Base-Shear due to Imp	oulsive Load, V _i =	51,183	kg		
в	CONVECTIVE MASS :					
	Convective mas	s of water, m _c =	11,20,833			
	Time period for	conv.mode, T _c =	5.31	seconds		4.1.6.
	Spectral Acc. Coef. fr	om Curve, S _a /g =	0.26			
	Seismic Coef. a	n = ZV2R x S_/g =	0.553	x S _a / g =	0.1417	
	Base-Shear due to Imp	ulsive Load, V _c =	1,58,794	kg		
С	TOTAL BASE-SHEAR :					
	Total Base Shear = >	1012 212 21	1.66.839	lan.		CI.4.6.3.P-19

Table 10- Impulsive and convective mass calculation

unctions	Choose Function Type to Add
RampTH UnifTH	From File ~
X Y	Click to:
	Add New Function
	Modify/Show Function
	Delete Function
	Click to:
	View Response Spectrum


Fig-Time history Function

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Load Case Name	Load Case Type		Add New Case
Dead	Linear Static		Add Copy of Case
ive	Linear Static		Modify/Show Case
EQ X	Linear Static		Delete Case
EQ Y	Linear Static	*	
.Case1	Nonlinear Modal History (FNA)		Show Load Case Tree
.Case2	Nonlinear Modal History (FNA)	*	L

Fig- Time history function Adding on load cases

Fig- Time histroy function Graph

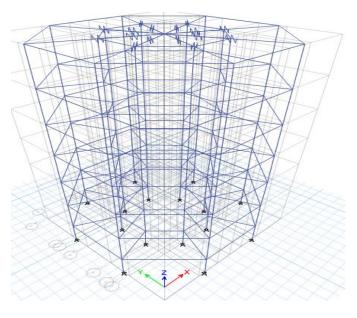
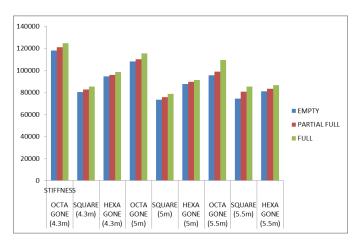
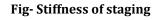
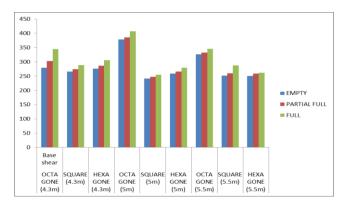





Fig-Perspective view of octagon column and bracing

Fig- Chart of Base shear

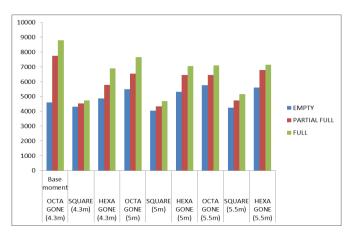
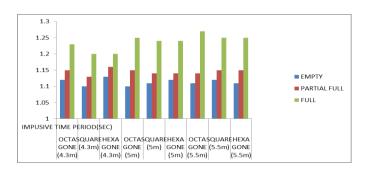



Fig- Chart of Base moment

Fig- Impulsive time period (sec)

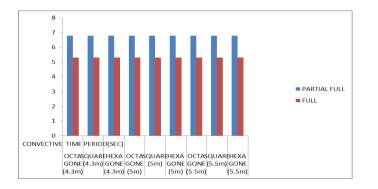


Fig- Convective time period (sec)

8. CONCLUSION

- 1. As the horizontal BRB height is increase, the stiffness decrease respectively.
- 2. Maximum Impulsive Time period is of octagonal BRB Configuration.
- 3. The Base moment is more of tank full condition compare to partial fill and empty condition.
- 4. Time Base shear is maximum of tank full condition compare to partial fill and empty condition.
- 5. From the above result it can be noted that octagonal configuration is more stable in terms of the other two as it has less base moment, base shear.
- 6. Moreover the given structural system is more efficient than horizontal BRB pattern as all the forces are evenly distributed in the system and the base shear and moment is comparatively less.

REFERENCES

- [1] Soroushnia, Soheil, et al. "Seismic performance of RC elevated water tanks with frame staging and exhibition damage pattern." Procedia engineering 14 (2011): 3076-3087.
- [2] Takeuchi, T., et al. "Effect of local buckling core plate restraint in buckling restrained braces." Engineering Structures 44 (2012): 304-311.
- [3] Dutta, S. C., S. K. Jain, and C. V. R. Murty. "Alternate tank staging configurations with reduced torsional

vulnerability." Soil Dynamics and Earthquake Engineering 19.3 (2000): 199-215.

- [4] Rathod, Mr Santosh, and M. B. Ishwaragol. "ANALYSIS OF OVERHEAD WATER TANK WITH DIFFERENT STAGING HEIGHT AND BASE WIDTH." (2018).
- [5] Abou-Elfath, Hamdy, Mostafa Ramadan, and Fozeya Omar Alkanai. "Upgrading the seismic capacity of existing RC buildings using buckling restrained braces." Alexandria engineering journal 56.2 (2017): 251-262.
- [6] IS: 1893-2014 (Part-II, Liquid Retaining Tanks) Criteria for Earthquake Resistant Design of Structures, Bureau of Indian standards, New Delhi, India.
- [7] Gaurav S. Atalkar and Anand M. Gharad (2014), "Comparative analysis of elevated water storage structure using different types of bracing patterns in staging" i-manager's Journal on Structural Engineering, Vol. 3
- [8] Ayazhussain M. Jabar and H. S. Patel (2012), "Seismic behavior of RC elevated water tank under different staging pattern and earthquake characteristics", International Journal of Advanced Engineering Research and Studies, Issue III, Vol. I.
- [9] Nishigandha R. Patil and Rajashekhar S. Talikoti (2015), "Seismic analysis of elevated water tank", International Journal of Civil and Structural Engineering Research, Vol. 3, Issue 1, pp: (90-94), pp.90-94
- [10] Pavan S. Ekbote and Dr. Jagadish G. Kori(2013), "Seismic Behavior of RC Elevated Water Tank under Different Types of Staging Pattern", Journal of Engineering, Computers & Applied Sciences (JEC&AS), ISSN No: 2319 5606, Volume 2, PP. 2429.
- [11] IS-456 (2000), Indian standard of code and practice for plain and reinforced concrete for general building construction, Bureau of Indian Standards, New Delhi.
- [12] IS-1893(2016), Criteria for Earthquake Resistant Design of Structures, [Part1: General Provisions and Buildings, Bureau of Indian Standard].
- [13] IS-875(Part 3)1987, Indian Standard code of practice for design loads (other than earthquake)for building and structure, Bureau of Indian Standards, New Delhi.
- [14] IS: 11682-1985 "Criteria for design of RCC staging for over head water tanks", Bureau of Indian Standards, New Delhi
- [15] IS: 3370 1965 "Code of practice for concrete structure for storage of liquids parts 1, part 2, part 4", BIS. New Delhi.