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Abstract – The task of facial expression recognition has 
been studied extensively. However, not a lot of research focuses 
on the deployment of the various deep-learning based 
approaches used for this task. We aim to compare different 
Neural Networks and the factors that should be considered 
when deploying these models on mobile devices. 
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1. INTRODUCTION 
 

We as humans convey a lot of messages through our 
expressions. The facial expression of a person can often give 
us a brief idea about their emotional state and their mood. 
Humans can easily understand facial expressions of another 
person with minimum delay and a high accuracy. However, 
achieving the same level of accuracy and speed has been a 
challenge for machines. Recent advances in the field of Deep 
Learning have made the machines more accurate and has 
significantly lowered the prediction latency. 

There has been a lot of research focussed on the task of 
machine learning using modern techniques such as 
Convolutional Neural Networks, Residual Networks and 
other Deep Learning based approaches. However, these 
approaches have mainly focussed on achieving the highest 
accuracy and have not considered the factors that affect the 
deployment of such deep-learning based models on mobile 
devices. 

In this paper, we compare various approaches such as 
Convolutional Neural Networks (CNNs) and Residual Neural 
Network (ResNet) and try to find the approach which is best 
suited for the task of facial expression recognition on mobile 
devices. 

 

2. RELATED WORK 
 

Researchers have extensively studied various approaches 
for achieving the best performance for the task of facial 
expression recognition. Approaches such as Convolutional 
Neural Networks [1], Attentional Convolutional Networks [2], 
and 2-Channel Convolutional Networks [3] have shown that 
Convolutional Neural Networks are the best performers for 
this task. However, due to the complexity of these models, 

they may not be the best for the task of performing facial 
expression recognition on mobile devices. Other approaches 
such as Residual Neural Networks [4] also have similar 
performance as that of Convolutional Neural Networks 

Moreover, the findings of various researchers [5][6] after 
studying the performance of Convolutional Neural Networks 
and Residual Neural Networks suggests that models should 
have a lower number of trainable parameters in order to 
minimize the size of the final model and have low latency 
during the prediction process. 

 

3. METHODOLOGY 
 

We developed three different models to get a 
comprehensive understanding of the factors affecting the 
deployment of deep learning models on mobile devices. The 
three models that were developed were – a Shallow 
Convolutional Neural Network, and a Deep Neural Network, 
a Residual Neural Network. The Residual Neural Network 
was based on the ResNet-9 architecture [7]. All models were 
trained on the same hyperparameters to eliminate the 
variance that would result from different hyperparameters. 
We used the one cycle learning rate method [8] where the 
learning rate of the optimizer starts from a lower value and 
slowly rises till it reaches the defined maximum value. The 
learning rate is then slowly reduced till we reach the lower 
value a few epochs before the end. Finally, in the remaining 
iterations the learning rate is annihilated way below the 
lower learning rate value. The hyperparameters used for the 
training process were as follow: 

Table -1: Hyperparameters used for the training process 

Parameter Value 

Epochs 20 

Batch Size 256 

Max. Learning Rate 0.008 

Optimizer Adam 

 
The three models were trained using the hyperparameters 

shown in Table 1 and their performance was compared. The 
parameters that we compared were validation loss, 
validation accuracy, training loss and model size. Later, we 
built an Android app using Flutter to compare the real-world 
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accuracy, size of the app and the prediction latency on 
mobile devices. 

 

4. DATASET & DATA PREPARATION 
 
 The model was trained on the FER-2013 Dataset [9]. This 
dataset consists of grayscale images of faces of size 48x48 
pixel. The faces have already been centered in the images 
and the faces generally occupy the same volume of space in 
each image. The dataset consists of a training test and a test 
set. The training set consist of 28,709 images and the test set 
consists of 3,589 images. All images in the dataset are 
labelled and have been categorized into one of the seven 
given categories where 0=Angry, 1=Disgust, 2=Fear, 
3=Happy, 4=Sad, 5=Surprise and 6=Neutral. 

 The images from the dataset were loaded using the 
DataLoader class of PyTorch. For both sets, the Grayscale 
transformation was applied which loads all images as 
grayscale images. This was followed by the ToTensor 
transformation which converts the images into PyTorch 
tensors. Then, the Normalize transformation was applied. 
This transformation normalizes all the images so that all the 
tensor values are between 0 and 1. Additionally, the 
RandomHorizontalFlip and RandomCrop transformations 
were applied to the training set to augment the data. These 
transformations help to extract more information from the 
dataset. 

5. ANALYSIS 

5.1 Model Training & Testing 
 
 All models shared some common features such as the 
Conv Block which was simply a 2D Convolution followed by 
Batch Normalization and a ReLU activation layer. The 
Shallow Convolutional Neural Network was built of 3 Conv 
Blocks, each followed by a 2D Max Pooling Layer. The output 
was then Flattened and passed through 2 Linear layers, each 
followed by a ReLU activation. A Linear layer was added as 
the output layer. The Deep Convolutional Neural Network 
had a total of 6 Conv Blocks in pairs of two, each pair was 
followed by a 2D Max Pooling Layer. Then, just like the 
Shallow CNN, the output was Flattened and passed through 2 
Linear layers, each followed by a ReLU activation. A Linear 
layer was added as the output layer. The ResNet-9 model 
was based on the standard definition of the ResNet-9 
architecture [7]. 

 After the three models were trained for 20 epochs with 
the hyperparameters as shown in Table 1, their accuracy and 
loss values were compared. The Training Loss was the 
lowest for the ResNet-9model and the highest for the 
Shallow CNN as shown below in Chart 1. Even though isn’t 
an important metric, it does show that the ResNet-9 model 
might be overfitting to the data. 

 

Chart -1:  A comparison of the Training Loss 

 Another loss metric that we compared was the Validation 
Loss which is the Loss when the model is run on the test set. 
Here, the Shallow CNN actually performed the best while the 
ResNet-9 model had the highest loss as shown below in 
Chart 2. This is further proof of the ResNet-9 model 
overfitting to the training set. 

 

Chart -2: A comparison of the Validation Loss 

 The Validation Accuracy which is the accuracy of the 
models on the test set was then compared. We found that the 
models performed quite similarly with the ResNet-9 model 
having the highest accuracy and the Shallow CNN having the 
lowest accuracy as shown below in Chart 3. 

 

Chart -3: A Comparison of the Validation Accuracy 
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 The final metric that we considered after model training 
was the model size. This would directly affect the size of the 
app that the model is deployed to and having a large model 
would make the app size large. We found that the Shallow 
CNN and the Deep CNN models were a lot larger than the 
ResNet-9 model as shown below in Chart 4. 

 

Chart -4: A Comparison of the Model Size 

5.2 Deployment on Mobile 

 
 After the three models were created, we deployed them 
to an Android app built using Flutter [10]. The app uses a 
camera to capture an image (Figure 1). This image is then 
converted to a grayscale image. We use a Haar Cascade 
Classifier [11] provided by the OpenCV Android SDK to 
detect faces in the image. The detected faces are then 
cropped and resized to get an image of size 48x48 pixels. The 
resized image is then converted to a tensor using the helper 
functions provided by the PyTorch Mobile SDK [12]. Finally, 
we predict the expression on the face by passing the tensor 
to the model. The predicted expression is then displayed to 
the user on a new page along with the time taken as shown 
below in Figure 1. 

 

Figure -1: The Prediction process on the Android App 

 

 

5.3 Results 

 

 As a part of the final testing, we deployed the three 
models through the Android app and tested them. The 
first point of comparison was the app size. The app size 
is directly related to the model size and so the results 
were similar to the results seen in the model size 
comparison. The ResNet-9 model had the smallest app 
size and the Deep CNN had the largest app size as 
shown below in Chart 5. This proves that the 
complexity of the model has a direct correlation with 
the app size after model deployment.  

 

Chart -5: A comparison of the App Size in MB 

 The next metric that was compared was the average 
latency. This is the time taken for getting a prediction from 
the model. We noted the latency for five runs of each model 
and calculated the average latency for the model. The Deep 
CNN was the worst performer here. The Shallow CNN and 
ResNet-9 model had similar latencies and only varied by a 
small amount as shown below in Chart 6. This proves that a 
complex model which has more trainable parameters takes 
more time to get the prediction as compared to a smaller and 
less complex model. 

 

Chart -6: A Comparison the Average Latency (in ms) 

 Finally, we tested the models on 50 real world images to 
get the real-world accuracy of the models. To get the 
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accuracy, we checked how many images were correctly 
predicted by the models by using the simple percentage 
formula. We observed that the Shallow CNN actually 
performed the best and the Deep CNN had the worst 
performance as shown below in Chart 7. This proves that the 
most complicated model may not be the most accurate one 
in real-world scenarios.  

 

Chart -7: A Comparison of the real-world accuracy 

6. CONCLUSION 

 We developed three different models for the task of facial 
expression recognition and compared various metrics to 
determine the most important things to consider when 
deploying deep-learning based models on mobile devices. 
Our results have shown that complex and deeper models 
aren’t a good fit for mobile deployment and may actually 
perform worse than simpler models. Also, the app size 
directly depends on the model size which means that a 
smaller model is better suited for deployment on mobile 
devices. Additionally, a more complex model also increases 
the latency which is the total time taken to get the prediction 
from the model. 
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