
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2267

Implementation of 32-bit RISC-V Processor

Nischitha D D1, K Sanjana Priya2, Shivani D3, Yashaswini K L4 and Dr. C M Patil5

 1-5Department of Electronics and Communication Engineering, Vidyavardhaka College of Engineering, Mysore,

Karnataka, India - 570002
---***---

Abstract - The main aim is to implement a 5-stage pipelining
based 32-bit RISC-V Processor. The processor is designed on
Verilog HDL in Cadence tool. It supports basic instruction and
vector arithmetic. This processor is handled using R-Type, I-
Type and Jump instruction. It designs and synthesizes the MIPS
processor using register files and insert the ALU forwarding
unit in order to avoid the stalls and hardware interlocks. It
supports data forwarding to prevent data hazard and
supports hazard detection as well. After that calculate area
and power using Cadence RTL compiler using slow and fast
libraries of 45 nm technology. The required netlist is obtained
using genus tool.

Key Words: RISC-V (Reduced Instruction Set), Harvard
Architecture, ALU (Arithmetic and Logical Unit), Verilog,
Cadence, Genus.

1. INTRODUCTION

These days there has been developing interest in RISC-V
processor because of low power utilization and faster
execution. The feature of the RISC-V processor is to speed up
the execution. The 32-bit RISC-V processor includes load and
store architecture and also uses the Harvard architecture to
expand the performance of the processor.

Popularly used RISC processors are MIPS, SuperH, IBM and
SPARC etc. MIPS processors are mainly used in Cisco
Routers, digital cameras, Sony play station game consoles
and Windows CE devices. The MIPS processors are generally
same kind of designs. However, it changes in the execution
stages like pipelining, single or multiple. The operations are
performed on chip registers rather than memory locations,
because the access time differs for register compared to
memory location. Micro pipeline technique is used in RISC-V
Processor, as each instruction is executed in number of
stages simultaneously.

2. LITERATURE SURVEY

Low Power Implementation of RISC-V Processor
It has become serious issue in design of System on Chip

(SoC) with increase in the rate of power consumption. So, it is
very important that the chip design engineer to improve the
power management at the architecture level itself. Because of
the reduction in the size of the chip, leakage of current is
increasing rapidly. It is required to manage the power of all
design of 90 nm and below. Since the management of leakage
current has high priority on the design and the

implementation, as for few libraries and design, hence the
source dissipates power in CMOS. RISC-V is newly introduced
ISA, which is free open source for industry implementation
being under the control of RISC-V establishment.

The main theme is to get the efficient low power RISC-V
processor with DFT. The power management techniques for
switching and leakage power reduction are applied on the
design are as follows

 i. Multi-Vth

 ii. Clock Gating and Clock Tree Optimization

iii. Multi-supply voltage

 iv. Power Shut Off (PSO)

Improving Energy Efficiency and Reducing Code Size with
RISC-V Compressed

In both simple and complex type of processor the Power
dissipation and the energy efficiency is concentrated more.
Instruction set architects has broadly used two techniques to
reduce the relative energy cost of instruction stream delivery.

1. To increase the amount of work performed by a
single instruction.

2. To reduce the size of the instruction.

Finally, discussed the implications of RISC-V Compressed
(RVC) for energy efficiency, performance, and processor
design. And compare the code size of RVC with other
commercial ISAs.

Variable-length RISC ISAs can reduce static and dynamic
code size as compared to their fixed-length counterparts;
also, they avoid performance loss of a less-capable ISA that
comprises only short instructions.

To analyze the set of RISC-V Compressed (RVC) instruction
and to evaluate RISC-V Compressed (RVC) effectiveness,
have to collect static and dynamic measurements from a
subset of the SPEC CPU2006 benchmark. Static
measurements were obtained directly from the resulting
executables and object code. Dynamic measurements were
obtained from a RISC-V instruction set simulator, running
the benchmarks to completion using their small input sets.

Arnold: an eFPGA-Augmented RISC-V SoC for Flexible and
Low-Power IoT End-Nodes

RISC-V Micro-Controller Unit (MCU) demonstrate the
flexibility of the System on Chip (SoC) to tackle the challenges
of many emerging IoT applications, such as

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2268

i. Interfacing sensors and accelerators with non-standard
interfaces.

ii. Performing on-the-fly pre-processing tasks on data
streamed from peripherals

iii. Accelerating near-sensor analytics, encryption, and
machine learning tasks.

The contribution of the presented heterogeneous System on
Chip (SoC) design and silicon demonstrator is summarized as
follows.

1. Architectural Flexibility

2. Power management

3. Leading edge performance and energy efficiency

HW/SW approaches for RISC-V code size reduction
Code density is a significant concern for low-cost IoT MCUs,

as it directly impacts the on-chip memory area (and cost) and
indirectly influences power and performance.

The code size in RISC-V can be reduced by: -

 Firstly by, tuning the toolchain at compile and link-time
with optimal settings, including those needed for including
libraries and using the linker script.

 Secondly demonstrated that RISC-V non-standard
extensions, such as the Xpulp extension, can boost
performance without any code size penalty.

The memory becomes a fundamental unit to use with care
as it is usually one of the most expensive parts of chips and it
biases the Performance, Power, and Area (PPA) results.

 The proposed steps are:

a) An analysis of the main compiler and linker options to
reduce code size.

b) A code size comparison of the two ARM and RISC-V ISAs.

c) Evaluates the impact on code size of the custom RISC-V
Xpulp extension and originally designed for pushing
energy efficiency.

d) A new RISC-V extension that targets an increased code
size density as a possible solution to decrease the density
gap between the two ISAs.

 e) Finally, evaluated the impact on core logic area of the HW
implementation of compressed push/pop/popret on an
open-source core.

A Compression Instruction Set Design based on RISC-V for
Network Packet Forwarding

The multi-core processor of RISC for network packet
forwarding has been restricted by the on-chip storage space.
As more and more cores are implemented in one chip, the
storage resources allocated by each core on the chip become
less and less, by this the conflict of visiting RAM has become
more prominent. Therefore, the utilization of more compact
instruction size will decrease the number of visits, and get a

higher instruction cache hit rate, accordingly improving the
performance of the application and energy productivity.

A compressed ISA for the network packet forwarding is
demonstrated by trying the new instruction set which altered
by this method has higher compression effectiveness and
better system execution for the network packet forwarding
applications. By implementing the network processor of the
multi-core architecture, the processing capacity for packet
forwarding has been improved. It also brought some
problems, like high cost, less storage space for each core,
higher energy dissipation, etc.

In order to obtain the real compression effect, designed a
complete hardware and software experimental environment.

 Hardware Experimental Environment

It adopts the high-performance hardware FPGA board and
the single core supporting RISC-V Compressed (RVC), and
RISC-V(RV).

 Software Experimental Environment

The software experiment environment includes test
assembly, PC test program, compiler, etc. And have an
approach to custom RISC-V compression instruction set, and
presents a custom instruction set for network packet
forwarding.

A RISC-V Processor SoC With Integrated Power Management
at Submicrosecond Timescales in 28 nm FD-SOI

 A RISC-V Processor System on Chip (SoC) is implemented
with integrated voltage regulation, adaptive clocking, and
power management in a 28 nm completely depleted silicon on-
insulator process. There is a second core which serves as an
integrated power-management unit that can measure system
state and change core voltage and frequency, permitting the
execution of a wide variety of power management algorithms
that can react at sub microsecond timescales while adding
simply 2.0% area overhead.

Energy efficiency is the key constraint in modern Systems
on Chip (SoCs). The Server-class chips are thermally limited
and require better energy efficiency to improve performance,
while the utility of mobile and IoT devices depends
substantially on low energy consumption to prolong battery
life.

The system is partitioned into two voltage domains:

1) Core domain where a variable-voltage contains the
application processor.

2) Encore domain where a fixed 1V contains the power
measurement and control blocks. Because the core can
operate at varying frequencies and voltages, all digital
communication between the core and the encore uses
level shifters and asynchronous queues.

This processor SoC couples an energy-efficient RISC-V core
and vector accelerator with a power-management processor,
integrated voltage regulators, and an adaptive clock generator,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2269

allowing for improvements in system energy efficiency through
the use of power-management algorithms running in
microsecond-scale feedback loops entirely on-die.

Design of 32-bit Asynchronous RISC-V Processor using Verilog
The 32-Bit RISC-V processor Comprises of Arithmetic Logic

Unit (ALU), Booth's Multiplier, Control Unit, Register Bank,
Memory and Data path. The Architecture is partitioned into five
phases. The pipeline stages are Instruction Fetch (IF),
Instruction Decode (ID), Instruction Execution (IE), Memory
Access (MA), and Write Back (WB). Design has 3 types of
memories; data, instruction and register memory.

Fig1: 32-bit Asynchronous RISC-V Processor

Every instruction starts with a 6-bit opcode. There are 3
types of instruction format: - R-Type, I-Type and J-Type.

 In Register(R) Type: - In addition to the opcode, it has 3
registers (rs, rt, rd), a shift amount field and a function
field. This type performs Arithmetic and logical (ALU)
operations. Shift Amount (SA) is used to shift and rotate
instructions. The amount of shift is decided by the source
operand rs. Function is used because it contains the
control codes to differentiate the multiple instructions.

 In Immediate (I) type: - In addition to the opcode, it has 2
registers (rs, rt) and 16-bit immediate value. Equal or not
equal operation is performed.

 In Jump (J) type: - In addition to the opcode, it has 26-bit
target address and perform jump operation.

Fig2: Instruction Format of Asynchronous RISC-V

FPGA Implementation of 32-bit RISC-V Processor with Web-
Based Assembler- Disassembler

 The proposed RISC-V processor is planned utilizing Verilog
and it is executed on Cyclone IV 4CE115 FPGA gadget
accessible on Altera DE2-115 Board. Additionally, electronic

constructing agent and disassembler instruments are created
and distributed as a piece of this task.

Before utilizing the objective RISC-V processor, the client
can create machine code utilizing the electronic constructing
agent instrument. At that point, the created machine code can
be downloaded onto the RISC-V processor utilizing UART.
The online constructing agent and disassembler apparatuses
are created with advancements, for example, HTML5, CSS and
JavaScript. The proposed processor is a completely useful
processor that utilizes RV32I base number instructional set
with 37 guidelines.

Fig3: Processor Design

Due to the absence of an electronic RISC-V Assembler and
Disassembler, individuals invest pointless energy making an
interpretation of the get together code to machine code. The
application that takes the RISC-V Assembly Code as a
contribution from a 'text region' in a Web-website at that point
changes it over to the Machine Code as a yield was created.
Using the online constructing agent and disassembler
communication between this framework and FPGA gave by the
UART. The given info goes to FPGA and reproduction works
dependent on the information. All the reproduction systems
have been done in Logisim. Logisim is an instructive device for
planning and recreating rationale circuits. 32-cycle RISC-V
processor was executed in a primary base and completely
bolsters RV32I base whole number guidance set. To show the
yield, the LCD on FPGA was utilized.

 Design of a 32-bit, dual pipeline superscalar RISC-V
processor on FPGA.

A 40 MHz, 32-cycle, 5-stage double pipeline superscalar
processor dependent on RISC-V Instruction Set Architecture
is introduced. It upholds number, increase partition and
nuclear read change compose tasks. The proposed
framework executes all together giving of directions. The
configuration consolidates a unique branch expectation unit,
memory subsystem with virtual memory, separate guidance
reserve and information store, number and floating point
execution units, intrude on regulator, blunder control
module, and a UART fringe. The interfere with regulator
upholds four degrees of preemptive need, which is
programmable for singular intrudes.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2270

Error control module gives single blunder remedy and
twofold mistake identification for the primary memory.
Wishbone B.3 transport standard is embraced for on-chip
correspondence. The processor is actualized on Virtex-7
XC7VX485TFFG1761-2 FPGA based board. Module gives
single blunder remedy and twofold mistake identification for
the primary memory. Wishbone B.3 transport standard is
embraced for on-chip correspondence.

 Design of RISC Processor Using VHDL and Cadence

 RISC Processor is done using VHDL synthesis model.
Initially, a data path module of the processor will be
demonstrated how the individual modules are going to send
the data from one module to the next and then a screen
capture will be appeared on the top-module view to show how
each bit of the processor will be from an external viewpoint.
The complete processor contains nine blocks. It includes
Program Counter (PC), Clock Generator, Instruction Register,
ALU, Accumulator, Decoder, IO Buffer, Multiplexer, and
Memory. Along with these modules an appropriate busses
form together to create a processor capable of storing, loading,
and performing arithmetic and logical operations. When the
fetch signal is high and the address multiplexers chooses the
contents of the Program counter to be stacked on to the
address bus and read cycle is started and the micro instruction
code is placed onto the data bus. The program counter is
incremented to point to the next instruction in the memory
location of the control memory. The data bus transfers the
micro instruction to the Instruction Register.

The instruction registers are of two formats: -

a) Opcode, data operand: The opcode is sent to the ALU and
decoder for decoding and a series of micro-operation are
created. The data operand is loaded on to the data bus and
moved to the ALU for its particular micro-operations as
determined by its opcode.

b) Opcode, Address of data operand: The address of the data
operand is loaded onto the address bus and a memory read
cycle is started. Here the memory location in the primary
memory indicated by the address lines is read and the
information is moved onto the data bus and the ALU
undergo the operations specified by its opcode.

A clock generator produces a clock signal. This signal is used
as inputs to the decoder which controls the operation of the
processor. It produces reset pulse which should be
dynamically low. In instruction register instructions are
fetched and stored.

In instruction register instructions are fetched and
stored. It is performed only during positive edge of the clock.
An accumulator is a type of register which acts as a
temporary storage location of ALU output and it is activated
only at the positive edge of clock. Memory has mem_rd,
mem_wr and address as inputs and data as output. If
mem_rd is high, it peruses the data of memory to the data
register, if mem_wr is high, data is written to the memory.
Arithmetic and Logic Unit (ALU) is a multiplexer, performs
standard mathematical operations. ALU operations should
be synchronized to the negative edge of the clock. The
address multiplexer chooses one output of the two given
inputs. At the point when the fetch signal is high, the address
of the program counter is moved on to the address buses and
thus instruction is fetched. In any case, assuming low, the
operand address determined in the address field of the
instruction register is moved onto the address bus and
consequently fetched. A decoder gives the correct
sequencing of the system. Depending upon the opcode it
translates after it gets from the instruction register. The
decoder is a basically limited state machine which comprises
of states. After converting VHDL to PSPICE library and object
file. The next step is to synthesize.

 Design of a 16-Bit Harvard Structure RISC Processor in
Cadence 45nm Technology

 The MIPS processors are generally same kind of designs.
However, it changes in the execution stages like pipelining,
single or multiple. The operations are performed on chip
registers rather than memory locations, because the access
time differs for register compared to memory location. Due to
the operation speed mobile phones, tablets and portable
devices are using ARM RISC processor. The disadvantage in
portable devices was that takes high power which leads to less
battery life and causes failure in silicon parts of the devices.
This disadvantage has been decreased in this project during
by-pass the pipelining stages, but it causes Dynamic power
dissipation. The power dissipation is mainly due to unwanted
switching stages or a greater number of transitions present in
the device.

The pipelining stage includes fetch, decode, execute and
memory read/write operations. 4-stage pipelining and Clock
gating is implemented to reduce the performance and power.
Mainly this design reduces the Dynamic power dissipation as
clock turn off clock signal when not need and it load up to four
clock cycles so that simultaneously task can be done. Every
output of the pipelining stage is the next state input. The
microinstructions performed in this design were separated.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2271

Fig4: Instruction Format of RISC

ASIC Design of MIPS Based RISC Processor for High
Performance
 RISC uses pipelining concept and number of register to

store the intermediate data values.The execution of an
instruction is divided into number of stages.

• The IF stage gets the next instruction from memory with
the address present in the Program Counter (PC) and
afterward it will be stored in the Instruction Register (IR).

• In ID stage instruction are decoded and evaluates the
program counter instruction, and reads if any operand is
required from register.

 In EXE stage the execution of ALU operation on
instructions takes place.

 Memory Access stage takes place only if any current
instruction requires the memory access.

Fig5: MIPS Processor with forwarding unit

Hazard Unit

 Hazards happen because of instruction pipelining in CPU.
An incorrect compilation result occurs when the next
instruction cannot execute in the particular clock cycle.

 The control unit decides if Hazards will happen or not
when an instruction is fetched. On the off chance that the
Hazard will occur, at that point the control unit will
embed no operation.

Forwarding Unit

The processor will execute millions of instructions per
second, this leads to a problem called Interlocking in the
pipeline stages. This can be solved by stalling the pipeline
stages, i.e., Divide the pipeline into two parts, instruction
fetch and instruction execute. To stall the pipeline ALU
forwarding unit is used in order to make use of the ALU
result directly. If the hazard occurs, the operands will come
from either MEM/WB or EX/MEM pipeline registers. If there
are no hazards, then register file will provide the operands
for an ALU.

Execution unit

MIPS execution unit contains ALU, where operations are
done based on opcode. Addition of program counter value to
the sign extension unit, which is left shifted by two units the
help us to get branch address. The sign extended unit
increases the number by attaching the most significant bit in
order to preserve the sign of a binary number. The control
signals for ALU are produced by the ALU controller. ALU
controller is a circuit has two inputs followed by an output,
which is a two-bit data that tells ALU, which type of arithmetic
and logical operation that ALU performs on the two-input
data. The simulation results are obtained from Xilinx tool.

3. CONCLUSIONS

MIPS process is a best way to eliminate the hazards in
original data path with the help of forwarding unit, where by
fetching the results from the pipeline registers before they
return back to the register record. Because of this processor
will not attend high impedance or unknown state, which
results in the performance enhancement. A 32-bit RISC-V
Processor has been implemented with Harvard architecture
and 5-stage pipelining structure. The RISC-V architecture is
simulated in Cadence RTL Compiler and synthesized using
Genus tool.

REFERENCES

[1] G. Rajesh Babu, M. Bhanu Prakash, M. Vijaya Kumari, Ch.
V. D. Ashok Kumar, G. Sai- “Design of 32-BIT
ASYNCHRONOUS RISC-V PROCESSOR using Verilog”

[2] Saeid Moslehpour, Chandrasekhar Puliroju, Akram Abu-
Aisheh – “Design of RISC Processor Using VHDL and
Cadence”

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2272

[3] Chandran Venkatesan, Thabsera Sulthana M, Sumithra
M.G, Suriya M – “Design of a 16-Bit Harvard Structure RISC
Processor in Cadence 45nm Technology”

[4] Agineti Ashok, V. Ravi- “ASIC Design of MIPS Based RISC
Processor for High Performance”

[5] Gokulan T, Akshay Muraleedharan, Kuruvilla Varghese-
“Design of a 32-bit, dual pipeline superscalar RISC-V
processor on FPGA”

[6] Etki Gür, Zekiye Eda Sataner, Yusuf H. Durkaya, Salih
Bayar- “FPGA Implementation of 32-bit RISC-V Processor
with Web-Based Assembler-Disassembler”

[7] Andrew S. Waterman- “Improving Energy Efficiency and
Reducing Code Size with RISC-V Compressed”

[8] Shashi Kumar V1, Gurusiddayya Hiremath- “Low Power
Implementation of RISC-V Processor”

[9] Pasquale Davide Schiavone, Davide Rossi Member, Alfio
Di Mauro, Frank Gürkaynak, Timothy Saxe, Mao Wang, Ket
Chong Yap, Luca Benini Fellow- “Arnold: an eFPGA-
Augmented RISC-V SoC for Flexible and Low-Power IoT End-
Nodes”

[10] Z Cao, Q Lv, Y Wang, M Wen, N Wu, C Zhang - “A
Compression Instruction Set Design based on RISC-V for
Network Packet Forwarding”

[11] Ben Keller, Martin Cochet, Brian Zimmer, Jaehwa Kwak,
Alberto Puggelli, Yunsup Lee, Milovan Blagojevi´c, Stevo
Bailey, Pi-Feng Chiu, Palmer Dabbelt, Colin Schmidt, Elad
Alon, Krste Asanovi´c, and Borivoje Nikoli´c- “A RISC-V
Processor SoC With Integrated Power Management at Sub
microsecond Timescales in 28 nm FD-SOI”

[12] Matteo Perotti, Pasquale Davide Schiavole, Giuseppe
Tagliavini, Davide Rossi, Tariq Kurd, Mark Hill, Liu Yingying,
Luca Benini- “HW/SW approaches for RISC-V code size
reduction”

