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Abstract-Three phase induction motors (TPIMs) are the 
most commonly used motors for rotating mechanical loads 
in the industrial environment. TPIM behavior is totally 
dependent on its parameters. The TPIM parameter 
information tells about the health of the induction motor 
and is also necessary for precise control of its behavior.  

 
A Generalized Neural Approach (GNA) trained using a 

hybrid approach, Quantum Genetic Algorithm (QGA), is used 
in this paper to estimate the parameters of the TPIM. The 
QGA trained GNA (Q-GNA) is then deployed for parameter 
estimation of a squirrel cage TPIM in the Electrical Power 
Research Lab, D.E.I. (Deemed University) Dayalbagh, Agra, 
India. Performance of The proposed method, Q-GNA, is 
compared with a common neural network trained using 
Levenberg-Marquet learning algorithm and a GNA trained 
using back-propagation. 

 
Keywords—Parameter Estimation, Three Phase 

Induction Motor, Artificial Neural Network, Equivalent 
Circuit Parameters, Quantum Computing.  

I.  INTRODUCTION  

Soft computing approaches have been broadly 
used for three phase induction motor (TPIM) fault 
diagnosis. These approaches may be categorized as expert 
systems [1], fuzzy logic system(FLS) [2], artificial neural 
network (ANA) [ 3-8], wavelet transform [9-11], and 
genetic approach [12]. 

The TPIM parameters are not constant during its 
operation and change non-linearly. As the parameters vary 
with operating temperature and weather conditions, 
magnetic, electrical and mechanical couplings, etc., the 
parameters estimated using the methods mentioned above 
do not give good results [13].  

 
In the area of electrical machines and power 

systems, ANA has been widely used over the past few 
decades [13-15, 26, 27]. ANA can handle large size 
information at a time because of its parallel processing 
capability. It can do non-linear mapping of input-output 
very well and extrapolate the results for ill-defined or 
noisy data.Thus, it can offer a viable approach for TPIM 
parameter estimation. 

 

However, it has certain inherent short falls as well. 
ANA needs large number of examples for good training and 
large training time. There is no guide to specific ANA 
structure and configuration for a problem at hand. The 
neuron structure, such as summation type, or product type 
or combination, etc. can also be a variable. To overcome 
these drawbacks, a generalized neural network (GNA) is 
proposed in [4-5]. GNA performance can be further 
improved using Quantum inspired Genetic Algorithm 
(QGA) to overcome the learning problems.   

 
A GNA, trained using QGA, is used for parameter 

estimation. Introduction of the work is provided in section 
one. The next four sections describe the development of 
QGA trained GNA, and the determination of equivalent 
circuit parameters of an induction motor is described in 
section six. Laboratory set up followed by experimental 
results and parameter estimation using Q-GNA, its 
comparison with Levenberg-  Marquet learning 
algorithmtrained ANA and back-propagation algorithm 
trained GNA, and experimental results are described in 
section seven followed by conclusions in section eight.  

II. GENERALISED NEURAL APPROACH  

The GNA is built with the help of diverse 
compensatory functions for aggregation and different non-
linear functions for activation of the GNA as shown in Fig. 
1. The GNA trained using back-propagation-algorithm (BP-
GNA) is used for TPIM parameter estimation. 

 
Fig-1: GNA Model 

III. GENETIC ALGORITHM 

Training and performance of an ANA depend 
heavily on starting weights. If the starting weights are not 
good, the optimization may take a long time or it may not 
converge at all.  Also, optimization using back-propagation 
algorithm for training needs error derivative. These 
hurdles motivated the researchers to devise a method 
which does not require a derivative and the solution does 
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not depend or is less dependent on the starting values. The 
genetic approach is such a stochastic method [16-19]. It 
mimics the procedure of natural progress in real time. 
Genetic algorithm (GA) has been used in the past for 
parameter estimation of the TPIM [20-22]. 

IV. QUANTUM GA 

 Advancements in modern science have led from 
conventional to quantum computing with improved 
calculation time, labour and memory requirements; the 
need for non-polynomial complex problems. Several real 
time problems can be solved by genetic approach, but not 
with good efficiency. Hence, the present work concentrates 
on a Quantum Genetic Approach (QGA). QGA adapts ideas 
of Quantum bits (Q-bits) and its superposition. The 
usefulness and worthiness of QGA is used to train a GNA. 

Q-bit is the fundamental construction block of Q-
calculation [23-24]. QGA contains group of Q-bits. The QGA 
population is modified by different operators to optimize 
the results [25]. A GNA trained using QGA (Q-GNA) is used 
in this work for parameter estimation of the TPIM.  

V. Q-GENETIC ALGORITHM TRAINED GNA 

Schematic diagram of a Q-GNA is shown in Fig. 2, 
in which QGA is used for training. The advantage of QGA as 
training algorithm is that it is a stochastic learning 
algorithm and hence there is no need to calculate the error 
gradient (or derivative of error) as in the case of standard 
back propagation algorithm or its variants. Pseudo-Code 
for a Q-GNA is given below. 

 

 
Fig-2: Schematic diagram of Q-GNA 

Fig-3: TPIM Equivalent Circuit  

 

 
In the following section the above mentioned tools have 
been used for the parameter estimation of the TPIM.  

VI. DETERMINATION OF EQUIVALENT CIRCUIT 

PARAMETERS OF AN INDUCTION MOTOR IN THE LAB  

 
A delta connected TPIM is energized by balanced three 
phase, 415 V, 50 Hz AC supply through a three phase auto-
transformer. To determine the equivalent circuit 
parameters of the TPIM, voltage, current and power of the 
TPIM are measured under the standard zero shaft load and 
blocked rotor test conditions, using a voltmeter, ammeter 
and two watt-meters. Speed of the TPIM is quite close to 
synchronous speed (i.e. slip is nearly zero) in the no-load 
test. Parameters of the common TPIM equivalent circuit, 
Fig. 3, are computed using the well-known procedure in 
the laboratory. In Fig. 3, 
 

Zo- no load impedance in ohms,  
Ro-no load resistance in ohms,  
Xo-no load reactance in ohms. 
Zb-equivalent impedance in ohms,  
Rb-equivalent resistance in ohms = r1+r2’,  
r1- Stator resistance in ohms 
r2- Rotor resistance in ohms referred to stator side 
Xb-equivalent reactance in ohms = x1+x2’. 
x1- Stator reactance in ohms 
x2- Rotor reactance in ohms referred to stator side 

 

VII. PARAMETER ESTIMATION USING ANA, 
BP-GNA AND Q-GNA 

 
Parameters calculated from the open circuit and blocked 
rotor tests are used as input for the training of an ANA, a  
BP-GNA and Q-GNA. These trained neural networks are 
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then used for estimating the values of Ro, Xo, Rb and Xb on-
line. Structure of the ANA, BP-GNA and Q-GNA used for on-
line parameter estimation is given in Table 1 and the 
results are compared in Table - 2.  
 

Table-1: ANA, BP-GNA and Q-GNA structures 

S.No.  Structure ANA BP-GNA/ Q-
GNA 

1. 1 Inputs 3 3 
2. 2 Outputs 4 4 
3. 3 Hidden 

neurons 
10 - 

4. 4 Hidden layer 
Activation 
Function 

tan 
sigmoidal 

tan 
sigmoidal 
and gaussian 

5. 5 layer 
Activation 
Function 

Pure linear Pure linear 

 

A. PARAMETER ESTIMATION USING ANA 

 
The voltage, current and power are acquired on-line and 
the parameters of the TPIM estimated on-line using the 
Levenberg-Marquet learning algorithm trained ANA are 
given in Table 2. 
 
  The simulated response of TPIM using ANA estimated 
parameters at 100% load is compared with actual results 
as shown in Figs. 4 through 8 for torque-speed, output 
power vs. speed, power factor vs  speed, motor current vs 
speed and efficiency vs speed curves.  

 
 

 

 

 

 

 

 

 
 

Fig-4: Speed -Torque Curve of TPIM 

 

Fig-5: Output Power - Speed curve of TPIM 

 

Fig-6: Power factor Vs. Speed of TPIM 

 

Fig-7: Motor Current Vs Speed of TPIM 

 

Fig-8: Efficiency Vs. Speed of TPIM 
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Table-2: Comparison of Experimental & Estimated Values 
using ANA GNA and Q-GNA at 100% load 

 
TPIM 

Paramete

rs 

Experiment

al Value(Ω) 

Estimate

d Value 

by ANA 

(Ω) 

Estimate

d Value 

by GNA 

(Ω) 

Estimate

d Value 

by Q-

GNA (Ω) 

Ro 21.1 24.3 22.1 21.4 

Xo 195.38 200.46 198.5 195.5 

Rb 23.011 25.01 24.12 23.5 

Xb 45.59 48.59 46.57 46.5 

B. PARAMETER ESTIMATION USING BP-GNA 

 
The voltage, current and power is acquired on-line and the 
TPIM parameters are estimated on-line using ANA and 
GNA. The results are tabulated in Tables 3 and 4.  
 
The speed- torque curve for these estimated parameters 
are compared with experimentally calculated parameters 
of healthy TPIM is shown in Fig. 9. 

 

Fig-9: Comparison of speed – torque curves of TPIM for 
ANA, GNA and experimentally calculated parameters 

Table-3: Parameter Estimation under different loading 
conditions using ANA 

 Loading condition 

% 

Load 

0% 25%  50%  75%   100%   150

%  

Ro 19.55 20.05 21.07 22.7 24.3 24.5 

Xo 182.4 185.8 190 196 200.4

6 

209 

Rb 22.61 22.78 22.88 22.9 25.01 23.9 

Xb 44.84 45.22 46.62 47.8 48.59 50 

 
 

Table–4: Parameter Estimation under different loading 
conditions using GNA 

 Loading condition 

% 
Load 

0% 25%  50%  75%   100%   150%  

Ro 19.75 20.15 21.47 21.5 22.1 23.1 

Xo 183.1 186.4 190.8 197 198.5 200 

Rb 22.71 22.98 23.18 23.2 24.12 24.9 

Xb 45.14 45.52 46.82 48.9 46.57 51 

 

C. PARAMETER ESTIMATION USING Q-GNA 

 
The voltage, current and power is acquired on-line and the 
TPIM parameters are estimated on-line using Q-GNA and 
the results are given in Table 5. The speed-torque curves 
for these estimated parameters are compared with 
experimentally calculated parameters of healthy TPIM are 
shown in Fig. 10. 

 

Fig-10: Comparison of speed – torque curves of TPIM for 
BP-GNA, Q-GNA and experimentally calculated parameters 

Table –5: Parameter Estimation under different loading 
conditions using Q-GNA 

 Loading condition 

 0% 25%  50%  75%   100

%   

150%  

Ro 19.75 20.3 20.6 21.1 21.4 21.11 

Xo 183.1 186.41 190.8 194.5 195.5 212 

Rb 22.71 22.99 23.28 23.4 23.5 24.1 

Xb 43.24 44.62 44.82 45.8 46.5 51.2 

 

VIII. CONCLUSIONS 

 
This paper deals with the experimentation on TPIM under 
different motor conditions and also different loading 
conditions. It is found that the phase currents of TPIM are 
very different for different motor conditions and under 
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different loading conditions. The information for motor 
currents, voltages, and power are used for on-line 
estimating the motor parameters Rb, Xb, and shunt 
parameters R0 and X0 of TPIM. The parameter estimation is 
done with neural approach such as ANA, GNA, Q-GNA and 
compared with conventional methods. 
 
The estimated parameters using proposed approaches 
have been used by the mathematical model of TPIM to plot 
the ω-T characteristics for validating the results.  
It is found that the results obtained from Q-GNA are better 
than other approaches ANA and GNA as shown in Figs. 10 
and Tables 3-5.   
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