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Abstract - Computer Vision serves as the basis for Artificial 
Intelligence to help the computer contemplate the visual 
world. With the emergence of Convolutional Neural Networks, 
this concept has been utilized for extracting the features of an 
image and understanding its significance in constructing the 
image. This led to the birth of Object Detection for computers 
to find and locate objects in the given image, serving various 
purposes in the automation world. For Autonomous Vehicles, 
this is one the most important concepts required to detect 
obstacles and to be trained to avoid them. In this paper, we 
explore the two distinct methods of Faster-RCNN to find and 
locate other vehicles that pose as an obstacle with the data 
obtained from various sensors placed atop our vehicle. We 
implement the two top-end models for 3D object detection (i.e. 
Voxelnet and Pointnet) and compare the strengths and 
weaknesses of the two models. We use TensorFlow and Keras 
to train our model to plot and identify the location of the 
obstacles in real time. We use the Mayavi library to build an 
environment to visualize the result and plot the bounding 
boxes of 3D point clouds. 
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1. INTRODUCTION 
 
With the advent of object detection, point cloud 3D object 
detection has become forerunner and has gained momentum 
as a research topic in the 3D computer vision community. 
Understanding a wide range of applications of 3D 
recognition in robotics, Augmented Reality etc has become a 
fundamental task of Industrial Revolution 4.0. One such field 
pivots around using techniques closely related to the 
Convolutional neural network (CNN), being extensively 
researched. 
 
However, use of LiDAR in detection of 3D objects remains a 
challenge. Moreover, deploying autonomous vehicles in 
urban environments poses technological hence 
administrative and legislative challenges; as also, it engulfs 
other tasks of detecting moving objects, generating, and 
representing sparse point clouds, distance measurement & 
accuracy etc. Regardless of its complications, LiDAR often 
outperforms 2D object detection due to the fundamental 
difference in its modalities. This being a) sparse 
representation over dense images (as noticed in ROI 
mapping) and b) using point clouds which are 3D while 
image-based object detection is 2D. 

In this paper we dive into two architectures of 3D object 
detection - voxelnet and frustum pointnet - that augment 
LiDAR, learning directly from point clouds. Hence, by making 
use of comparative analysis and feature-extraction 
methodology, and taking into account challenges of 
quantization, localization, effective range of detection, 
sampling uniformity/non-uniformity etc, we evaluate their 
respective performance. 
 
Some early works have tremendously experimented on 
using 3D object detection or by projection of point cloud 
onto images [], thus offering some perspectives and insights, 
being advantageous. However, using this generalized view 
neglects the applicability and efficiency of convolutional 
neural networks - ending up impractical in application. In 
order to address these issues, we have taken two well 
performing models and compare them in terms of accuracy, 
results, localization, ease of object classification etc. 
 

1.1 Voxelnet 
 
What Voxelnet typically does is equally divide and equally 
space out ‘3D voxels’. So it then morphs these collection of 
points within each voxel into a simplified object 
manifestation, i.e. shape representation, by using a 
convolutional middle layer such as ConvMD (cin, cout, k, s, p) 
which will be explained later on. An Advantage here is the 
convolutional middle layers will aggregate voxel-wise 
characteristics within an expanding receptive field, adding 
more context to the shape description. To simplify, it's a 
progressive, expanding methodological apparatus invoked 
for vividly defining shape boundaries. This is what gives its 
bounding boxes high accuracy. But as foreseen, the model 
requires N number of steps which could be memory 
consuming and time taking procedure. 
 
For even better comparison, Voxelnet has reportedly been 
said to “outperform the State of the Art, LIDAR based 3D 
object detection methods by a large margin”, according to Y 
Zhou et al (2017). 

 
1.2 Pointnet 
 

Pointnet is a deep learning framework which directly 
consumes the 3D point cloud into its learning framework. It 
then applies these point clouds into a unified task of 3 
approaches involving semantic or part segmentation of parts 
and object classification. By taking in raw point cloud data, 
Pointnet is a pioneer neural network model in machine 
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learning in the sense of it being simple and effective for point 
cloud recognition. It does so with these sets of points 
without rendering or voxelization so that it can reduce 
unnecessary colossal tasks. Thereby, Pointnet too is highly 
effective and in performing against State of the Art 3D object 
detection methods. 

 
What Pointnet uses is called max pooling, it is a single and 

symmetric function of dealing with raw input data that is 
expected to be an unordered set. 

 

2. RELATED WORK 
 
As we discussed earlier, tremendous research has been made 
on 3D understanding, its implementation using LiDAR. Some 
detailed and well defined, earlier approaches [11, 13, 14] 
show us exciting hand-crafted representations. Newer 
popular representations using 3D convolutions to compute 
3D voxel grid [10, 12]. But, most such efforts have focused on 
hand-crafted feature representations such as bird’s eye view 
projection until VoxelNet. The work of Yin Zhou; et al., [7] 
introduces a generic 3D detection network that unifies 
feature extraction and bounding box prediction into a single 
stage, thus providing a single end-to-end trainable neural 
network. VoxelNet takes the input of point cloud as equally 
spaced 3D voxels and transforms a group of points within 
each voxel into a unified feature representation. This is 
achieved through the voxel feature encoding (VFE) layer. This 
layer is then connected to a RPN layer to generate detections. 
Although this seems to be a single and clean solution to 
process LiDAR data, VoxelNet is slow and expensive when 
dealing with such a large amount of voxels. 
 
The work of Qi; et al., [8] introduces another approach for 3D 
object detection using Frustum PointNet. This work uses 
RGBD data to perform 3D object detection instead of using 3D 
voxels. It directly operates on raw point clouds by popping up 
RGB-D scans. Instead of solely relying on 3D proposals, 
Frustum PointNet leverages both mature 2D object detectors 
and advanced 3D deep learning for object localization, 
achieving efficiency as well as high recall for even small 
objects. 
 
In this paper, we compare the concept and workings of 
VoxelNet and Frustum PointNet in effectively detecting 
objects in the environment and determine the performance of 
each in different scenarios. 
 

3. IMPLEMENTATION 
3.1 Voxelnet: 
 

VoxelNet is a 3D object detection model that solves the 

problems faced by traditional models by using revolutionary 

new methods (learns the features of the objects directly from 

the point cloud instead of detecting the manually crafted 

features used by traditional object detection models that 

bottleneck the usable information and increase the 

computational complexity and memory density). It uses 

LiDAR sensors to obtain the input data rather than using 2D 

image and depth data. Though this is an expensive method, 

the use of point cloud data helps make it a complete end-to-

end model for 3D object detection. VoxelNet achieves this 

using 3 functional blocks, similar to FRCNN, (1) Feature 

learning network (2) Convolutional middle layers (3) Region 

proposal network. 

Feature learning network:(Pre-processing) 

Voxel partitioning and grouping of point cloud: 

The 3D space information from the point cloud is divided 
into equal partitions called voxels based on the dimensions 
of the 3D space. The point clouds are then mapped into their 
respective voxels based on their position in space. 

Random sampling: 

Unlike ocular data, the data from point clouds is sparse and 
has a very highly varying density due to the factors such as 
non-uniform sampling, occlusion and the pose of the object 
relative to the sensor. This can cause issues such as 
increased memory and computational requirements and 
biased data due to the highly varying density of points. This 
is solved by fixing a random limiter for the number of points 
that can reside in a voxel. This solves the above mentioned 
problems and greatly decreases the input bias caused by the 
erratic point density. 

Stacked voxel feature encoding: 

The stacked voxel feature encoding layers accomplish the 
task of encoding the features of the points into the voxels 
they are located in. The VFE layers take in the xyz 
coordinates of the points in the voxel as input and passes it 
through linear layers with batch norm and ReLU to obtain 
the pointwise feature representation. It is then aggregated 
by concatenating the outputs to their corresponding voxel-
wise feature.  

Sparse tensor representation: It is obtained by processing 
only the non-empty voxels from which a list of voxel features 
are acquired. The voxel-wise features can be represented as 
a sparse tensor of 4 dimensions. As over 90% of the voxels 
are empty from the point cloud data, representing the non-
empty voxels greatly decreases the memory usage. 

Convolutional middle layers: 

The model uses ConvMD(cin, cout, k, s, p) to represent an 
Mdimensional convolution operator where cin and cout are 
the number of input and output channels, k, s, and p are the 
M-dimensional vectors corresponding to kernel size, stride 
size and padding size respectively. When the size across the 
M-dimensions are the same, a scalar is used to represent the 
size e.g. k for k = (k, k, k). Each convolutional middle layer 
applies 3D convolution, BN layer, and ReLU layer 



                International Research Journal of Engineering and Technology (IRJET)                   e-ISSN: 2395-0056 

                Volume: 08 Issue: 05 | May 2021                 www.irjet.net                                                p-ISSN: 2395-0072 

 

© 2021, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 2612 

sequentially. The convolutional middle layers aggregate 
voxel-wise features within a progressively expanding 
receptive field, adding more context to the shape description. 

Region proposal network: 

A region proposal network following the architecture 
derived from the faster r-cnn is heavily modified and 
incorporated into this model which takes the input feature 
map from the last convolutional middle layer. The RPN has 3 
blocks of fully convolutional layers. The first layer of each 
block down-samples the feature map by half via a 
convolution with a stride size of 2, followed by a sequence of 
convolutions of stride 1 *q. After each convolution layer, BN 
and ReLU operations are applied. The output of every block 
is then upsampled to a fixed size and concatenated to 
construct the high-resolution feature map. The feature map 
is mapped to the probability score map and regression map. 

3.2 Pointnet: 

Pointnet also uses a deep learning framework that takes 
point cloud data as input. But, unlike voxelnet pointnet takes 
a different approach in rather than grouping the point cloud 
data into voxels the model learns to select and take the most 
valuable data which in turn later is used to determine the 
shape of the overall structure. Pointnet achieves this by 
using depth data along with 2D images from the Kinect 
sensor. This is a cheaper alternative compared to a LiDAR 
sensor. 

Pointnet has two functional modules, the classification 
network and the segmentation network. And the model 
comprises three modules, a symmetry function to process 
the unordered input. Moreover architecturally the model is 
classified into classification network and segmentation 
network. 

Classification network: 

The classification network attempts to find the global 
maxima to fit the classes for the data. Classification network 
uses a max-pooling layer to aggregate the global features and 
scores the fit of each of the classes. 

Segmentation network: 

The segmentation network takes in the features and scores 
from the classification network and tries to find the local 
maxima for the network. It tries to fit the classes to specific 
regions. 

4. RESULT: 

In this paper, we have reviewed two methods to localize and 
detect objects in the environment and provide 3D bounding 
box outputs. We evaluate and compare the performances of 
both VoxelNet from the work of Yin Zhou; et al., [7] and 
Frustum Pointnet from the work of Qi; et al., [8] on the KITTI 
3D object detection benchmark which contains 7,481 
training images and point clouds and 7,518 test images and 
point clouds, covering three different categories: Car, 
Pedestrian, and Cyclist. For each of these classes, the 
detection outcomes are evaluated on the basis of three 
difficulty levels: easy, moderate, and hard, determined 
according to the object size, occlusion state, and truncation 
level in the image captured by the camera sensor. Table 1 
shows the test results from the KITTI server [7] for average 
precision in bird’s eye view detection; Table 2 shows the test 
results from the KITTI server for average precision in 3D 
detection [9]. For analysis, the two methods are compared 
with several other algorithms such as VeloFCN [2], 3D-FCN 
[3], MV [4], Mono3D [5], and 3DOP [6].  

Table -1: 
 

Preparation of Manuscript 

Method Modality 

Car Pedestrian Cyclist 

Easy 

Modera

te Hard Easy 

Modera

te Hard Easy 

Modera

te Hard 

Mono3D Mono 5.22 5.19 4.13 N/A N/A N/A N/A N/A N/A 

3DOP Stereo 12.63 9.49 7.59 N/A N/A N/A N/A N/A N/A 

VeloFCN LiDAR 40.14 32.08 30.47 N/A N/A N/A N/A N/A N/A 

MV(BV+F
V) LiDAR 86.18 77.32 76.33 N/A N/A N/A N/A N/A N/A 

MV(BV+F
V+RGB) 

LiDAR+
Mono 86.55 78.1 76.67 N/A N/A N/A N/A N/A N/A 
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VoxelNet LiDAR 89.6 84.81 78.57 65.95 61.05 56.98 74.41 52.18 50.49 

PointNet 
LiDAR+
Mono 88.7 84 75.33 58.09 50.22 47.2 75.38 61.96 54.68 

 
Table -2: 

Preparation of Manuscript 

Method Modality 
Car Pedestrian Cyclist 

Easy Moderat

e 

Hard Easy Moderat

e 

Hard Easy Moderat

e 

Hard 

Mono3D 
Mono 2.53 2.31 2.31 N/A N/A N/A N/A N/A N/A 

3DOP 
Stereo 

6.55 
5.07 4.1 N/A N/A N/A N/A N/A N/A 

VeloFCN 
LiDAR 

15.2 
13.66 15.98 N/A N/A N/A N/A N/A N/A 

MV(BV+F
V) 

LiDAR 
71.19 

56.6 55.3 N/A N/A N/A N/A N/A N/A 

MV(BV+F
V+RGB) 

LiDAR+
Mono 

71.29 
62.68 56.56 N/A N/A N/A N/A N/A N/A 

VoxelNet 
LiDAR 

81.97 
65.46 62.85 57.86 53.42 48.87 67.17 47.65 45.11 

PointNet 
LiDAR+
Mono 

81.2 
70.39 62.19 51.21 44.89 40.23 71.96 56.77 50.39 

 

5. CONCLUSIONS 
 
This paper reviewed the state-of-the-art of 3D object detection within the context of autonomous vehicles by analyzing the 
working of VoxelNet and Frustum Pointnet. We analyzed sensors technologies and discussed standard datasets for 3D object 
Detection for vehicles. VoxelNet and PointNet were reviewed alongside similar works that were categorized based on sensor 
modality: monocular images, point clouds (obtained through lidars or depth cameras) and fusion of both.  
 
Quantitative results, obtained from the KITTI benchmark, showed that monocular methods are not reliable for 3D object 
detection, due to lack of depth information, which prevents accurate 3D positioning [1]. Performance from LiDAR methods, 
such as VeloFC and MV, were surpassed by that of VoxelNet in 3D object detection and accurate localization in both bird’s eye 
view and 3D detection. While the performance of PointNet is also better when compared to VeloFC and MV, VoxelNet delivers a 
better performance when it comes to 3D object detection. Though PointNet is faster in localizing the objects due to its FRCNN 
algorithm on 2D image, VoxelNet’s higher score shows it's better in overall performance. 
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