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Abstract - To analyze the genuineness and quality of a 
person giving a speech or an interview while proctoring. 
Detect any forgery made by deepfake techniques using deep 
learning. Create a behavioral profile and analysis of that 
person which can be used for judging their peculiarity. In 
order to execute this, we have created four modules namely 
Face Detection Module, Sound Expression Module, Deepfake 
Detection Module and an Aggregator Module which 
combines the result of all the three given modules into one 
and provides output to the user in the form of a profile. The 
basic idea of our project is to present a forensic tool that will 
provide Deepfake, Audio and Video expression analysis in a 
single package. The system will determine whether the 
Candidate is giving a genuine interview or not. There would 
be no discrimination during the interview process, this 
system will remove all of the biases. 
 
Key Words:  deepfake, cyber-forensics, deep-learning, 
image processing, audio processing. 
 

1.INTRODUCTION  
 

With increase in deep learning technology, we 
have seen advancements in video editing and forgery but 
there is also positive development in analysing one’s 
interview performance. In current crisis, work from home 
culture is increasing, people are not meeting face to face 
which gives them chances for making forgery or 
deepfaking (identity tampering) in their video stream. In 
this scenario, recruiters might anticipate for a single 
application or service that will do the behavioural analysis 
of a candidate along with forgery detection. 
 

In order to analyse the genuineness and quality of 
a person giving a speech or an interview while proctoring. 
Detect any forgery made by deepfake techniques using 
deep learning. Create a behavioural profile and analysis of 
that person which can be used for judging their 
peculiarity. The basic idea of our project is to present a 
forensic tool that will provide Deepfake, Audio and Video 
expression analysis in a single package. The system will 
determine whether the Candidate is giving a genuine 
interview or not. 
 
The System provides Features as follows:  
 

1) Deepfake Detection 
2) Face Expression Analyzer 
3) Sound Expression Analyzer 
4) Complete Profile Analyzer 

 

The Deepfake Detection module includes first of 
all gathering of data, then deepfake data training will be 
done, followed by Deepfake Detection. Whereas, in the 
Face Expression Analyzer, data gathering will be done 
firstly followed by training the model and then predicting 
the face expression according to the given user input to 
the system. 
 

In the Sound Expression Analyzer Module, first of 
all data gathering will be done, then it will be trained so 
that it can set an expression mode for the sound sample. 
Following this procedure, a feature data will be created for 
that sound sample. The input audio frame will be directly 
provided to the sound expression analyser. This audio will 
be compared with the trained sound sample given from 
sound expression trainer and then predictions will be 
made for the input audio sample. 
 

The Final prediction of profile will be given as 
output in a SRT file. 

 

2. MATHEMATICAL MODEL 
 
 In this section we will construct a mathematical model 
that describes the functions of each of our modules in 
terms of set relations, input output tuples and domain to 
which they belong. We will discuss these domains first and 
then after construct their mapping. 

2.1 Input Domain 
 
 We have an Audio Video screencapture input so input 
varies with time. Consider that   is input stream, of two 
time-varying tensors, 

  ( )  ( ( )  ( ))                

Where,   ( )  ,  -    ( )           is the audio stream,  

and         ( )   [    ]     
( )   is the r-g-b video stream. 

Where        *   +                are bytes. 

2.2 Output Domain 
 
The output is also a stream of tuples which belong to 
following output domain, 
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The Output is composed of following entries: 

1) t : time :time at which a reading was taken w.r.t 
video. 

2) df : Boolean : 1 if deepfake frame else 0. 
3) gs :  float : genuineness score between 0 to 1. 
4) pe : emotion ID : prominent expression found at 

time t. 

In set theory, 

     (    )    *   +     ,   -        

         *                                     

                            +  

Let op be output tuple and O is output domain, 

    *   +  ,   -    

Hence op is 4-tuple as follows, 

  ( )  (    ( )   ( )   ( ))     

2.3 Functions or Modules 
 

Our project or application can be viewed as a 
function F that takes in input ip and gives output op. 

  ( )   (  ( )) 

Where mapping        

2.3.1: Module 1: DeepFake Detection 

 DeepFake detection can be defined as a function 
that takes a video frame at time t and gives binary result 1 
if deepfake else 0. 

  ( )    ( ( )) 

Where mapping      *   + 

Furthermore, DF is composed of 2 functions: 

1)        : Face detection, grayscale conversion 
and Cropping 

2)       *   + : DeepFake Detection 

   (        ) 

2.3.2: Module 2: Face Expression Detection: 

 Face Expression detection can be defined as a 
function that takes a video frame at time t and gives one of 
the expression IDs in E. 

  ( )    ( ( )) 

Where mapping        

Furthermore, FE is composed of 2 functions: 

1)        : Face detection, grayscale conversion 
and Cropping 

2)         : Face Expression Detection 

   (        ) 

2.3.3: Module 3: Sound Expression Detection: 

 Sound Expression detection can be defined as a 
function that takes an audio frame at time t and gives one 
of the expression IDs in E. 

  ( )    ( ( )) 

Where mapping        

Furthermore, SE is composed of 2 functions: 

1)          : Mel-Frequency Cepstral 
Coefficients features extraction where F is 
features set. 

2)         : Sound Expression Detection. 

   (          ) 

2.3.4: Module 4: Aggregator: 

 Aggregator is a function that takes in deepfake 
reading df, face expression ID ‘fe’, and sound expression ID 
‘se’. Let’s say that we define AGG as aggregator function 
then, 

  ( )      (  ( )   ( )   ( )) 

Its mapping is     *   +        

Aggregator has a function to calculate the genuineness 
score, GS which takes two arguments, 

1) fea : array  : array of face expressions for t = t - 5 
to t = t 

2) se : E : sound expression generated at t = t 
recorded every 5 sec. 

   ( )  *  ( )             + 

Genuineness score can be defined as: 

  (      )   
 *  +       

     
 

Further the Aggregator function can be defined as, 

  ( )     (  ( )   ( )   ( )) 

                               (    ( )   (   ( )   ( ))   ( )) 

Here prominent expression   ( )    ( ). 

Hence the final project function F can be defined as, 
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  ( )   (  ( )) 

     (  (  ( )  )   (  ( )  )   (  ( )  )) 

Which completes our mathematical model. 

3. FEASIBILITY ANALYSIS 
 

This subsection discusses on how the algorithms 
or structures used in our modules are feasible and can be 
implemented mathematically. Here we will analyze the 
computational modules we will be using in our 
implementation with respect to their space and time 
complexity whether it is P or NP complete. 

 
 For this we need to first understand the 
fundamental unit of computation we will be using in all of 
our modules involved in audio-video processing, the 
Convolutional Neural Network which is in turn based on 
Neural Networks. So, any inferences we make on neural 
networks will implicitly apply on Convolutional Neural 
networks and in turn on the higher order models used. 
And thus, on the architecture we will be using. 
 
The Neural Network has two main functionalities, forward 
propagation and backward propagation. Every operation 
in neural network is a matrix multiplication, addition or 
function mapping out of which addition and mapping of m 
by n matrix has time complexity  O(mn) and multiplication 
of m by n and n by p matrix has O(mnp) when applied one 
element at a time also these operations will produce a 
matrix which has finite space complexity i.e.,O(n2). As 
Neural network is composed of matrices and its 
operations, a Neural network is P complete and hence can 
also be effectively further reduced in terms of time by 
using parallel computation. 
 
 We are using pytorch library to achieve this which 
has functionalities of creating matrices and tensors which 
are parallelly computed in dedicated Graphic Processing 
Units (GPUs). These processors compute all rows and all 
columns at constant time so any operation for matrix 
which was taking O(mn) time will take O(1) time with 
same space complexity. So, addition and mapping will take 
O(1) time and multiplication will take O(n) time, which is 
also of polynomial order. It turns out that Neural 
Networks, hence convolutional Neural Networks and thus 
our models are P-complete. 
 
 From above statements we conclude that our 
architecture is feasible with respect to space and time 
mathematically. 
 

4. ARCHITECTURE 
 
 The architecture of forensic tool for deepfake 
detection and profile analysis is an integrated architecture 

of Deepfake Detector, Face Expression Analyzer, Sound 
Emotion Classifier and Aggregator. 
 
 The architecture of our forensic tool is shown in 
Figure1. 

 

 
Fig 1: The architecture of the forensic tool 

 
In Deepfake Detection module the image data is 

taken from Face Forensics DB downloader and dataset 
loader and is given to Trainer Module. The Validation 
Module takes this and passes it to the Deepfake Detector. 
The cropped faces data is given as input to Deepfake 
Detector which compares them with the trained data and 
generates binary output 1 or 0. 

 
In Face Expression Detection module, the cropped 

face data from the fer2013 dataset and is given to Face 
Expression Classifier, simultaneously the captured 
screenshot of the candidate is given to Face Expression 
Classifier as input which then will compare these 
screenshots with the training module data and generate 
ExpressionID accordingly. 

 
In Sound Expression Detection the sound data is 

taken from RAVDESS dataset and given to Training 
module. Trained model is given as input to Sound Emotion 
Classifier, and simultaneously audio stream of candidate is 
given as input to it. Sound Emotion Classifier will generate 
SoundExpressionID by comparing audio stream with 
trained data. 

 
The Aggregator module takes input from all three 

modules, it will take both ExpressionID and 
SoundEmotionID and map them every 5 seconds and will 
send binary output to Result Dispatcher. Binary output 
from Deepfake Detector is given to the Result Dispatcher. 

 
The Result Dispatcher compares both binary 

values and generates a final score which will be given to 
the Interface. The Interface will generate the output in an 
SRT and mp4 file. 
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5. IMPLEMENTATION AND TOOL 
INFRASTRUCTURE 
 

5.1 Getting Input, Audio Processing and 
Aggregator 
 

The video input is provided by the screencapture 
by ‘mss’ python module. It captures the entire screen 
available. This enables to capture video even from online 
interviews or meetings as we may not have direct access 
to capture the video stream from browser or video 
conferencing application. Every frame is captured and 
written in the shared memory on the go. Coming to audio 
input, the processing of audio stream takes place in 
entirely different process. The sound expression module 
then communicates its result (expression enum) to the 
aggregator via shared memory in async. Every time after 
sound module communicates the genuineness score, 
prominent expression and deepfake percentage is 
calculated (aggregated) and its subtitle is appended. 
 

5.2 Dumping Output 
 

As specified above the output is in the video and 
subtitles file (written by ‘srt’ python module) which gives 
the deepfake percentage, genuineness score and 
prominent expression for approximately every 5 seconds. 
The main reason for such output format is the real time 
playback of the recorded video and associated output. 
 

5.3 The Role of Shared Memory 
 
 It is observed that the face and deepfake modules 
do not process video frames in real time, i.e., while 
processing one frame they may drop some frames for 
processing after which they will give their output. In order 
to enable real time analysis, we need to keep operation of 
video capturing and deepfake, face expression in async 
manner in entirely different processes. The videocapture 
(from aggregator.py) continuously writes the video stream 
in allocated shared memory and the deepfake and face 
detector module can get it on demand according to the 
pace of their processing.  
 
 However, after processing they need to 
communicate their results back to the aggregator so here, 
we use another shared memory where these modules will 
share their enumerations to the aggregator. The shared 
memory utility is provided by the ‘SharedArray’ python 
module. 
 

5.4 The Process Launch Sequence 
 
 The diagram below illustrates the launching 
sequence of modules in their processes. The hatched 
region represents that the module and its libraries are in 
loading state. 

 
Fig 2: Process Launch Sequence Diagram 

 
In order to capture and process the incoming 

audio and video streams, there is a need to execute their 
process in parallel in async manner and then collect their 
periodic results into a parallelly running aggregator. The 
operating system provides two kernel APIs to execute 
tasks in parallel i.e., forking a new process (fork syscall in 
posix) or creating a new thread within a same process 
(clone syscall in posix). They have their own limitations 
so; we will choose what is optimal for our project. For us 
memory is a major concern as every module has its own 
deep learning framework that consumes memory that may 
cause overflows if launched in other thread as threads are 
meant for low resource consuming codes. Moreover, the 
call stack of threads is limited and may not accommodate 
the calls of the deep learning framework. This is the 
reason we launch sound expression module separately in 
different process as it is totally independent task with 
different input device. However, we observed that the 
deepfake detection and face expression needed the same 
cropped face for processing so we have kept them in the 
same process (main process). The videocapture and 
collection, aggregation of results in aggregator has to be 
done in parallel in async hence we launch it in an entirely 
new process.  

 
 Now focusing on the loading time of modules, the 
sound expression detector takes more time for loading as 
it has to initialize the pulseaudio microphone device plus 
its deep learning framework (tensorflow) whereas the 
face expression and deepfake detector loads in reasonable 
time and aggregator instantaneously loads and halts the 
videocapture until the most lately loading module i.e., the 
sound expression detector module loads completely and 
start capturing microphone. This communication happens 
via the shared memory allocated for sharing expression 
enums that if there is any non-negative sound expression 
enum at that given time. 
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5.5 The Process Termination Sequence 
 

The diagram below illustrates the termination 
sequence of modules in their processes. The hatched 
region represents that the module and its libraries are in 
de-loading state. 

 
 In order to terminate the ongoing application, we 
need to understand that we have two child processes 
running viz. the aggregator and sound expression detector 
out of which there is huge post processing in aggregator 
module in result dispatching (saving srt file and recorded 
mp4 video) and audio video synchronization of video for 
real time playback. We need to safely interrupt the child 
processes to break their processing loops, let them do 
their respective post processing, terminate and report to 
their main (parent) process which is in the waiting state to 
let children complete their tasks. 
 

 
Fig 3: Process Termination Sequence Diagram 

 
Whenever the main process gets a SIGINT 

(Interrupt signal) it interprets that we have to stop the 
application. The video loop (that analyzes deepfake and 
face expression) gets terminated and the sound expression 
and aggregator processes are explicitly sent (kill syscall) 
SIGINT so they stop their respective loops and begin post 
processing. The associated modules and libraries of main 
process are de-loaded and resources are released in 
parallel.  

 
 However, in aggregator there is huge post 
processing. Firstly, to save the recorded video and dump 
the ‘srt’ file and secondly, to synchronize the video, its srt 
and audio for real time playback. The algorithm of audio 
video synchronization as a part of result dispatcher is 
listed below. 
 
 

algorithm av_sync(video_file, actual_playback_time): 

 get video_file duration in video_duration using ffmpeg 

 change_ratio := actual_playback_time / video_duration 

 scale video_file change_ratio times using ffmpeg  

 concat wavfiles sequentially into audio.wav using sox 

 get output_video_file by merging video_file and audio.wav using ffmpeg 

 return output_video_file 

 
6. CONCLUSIONS 
 

We have introduced a new Forensic Analysis Tool 
along with Behavioral Analysis Features such as Face and 
Sound Emotion and Detection in a single application that 
will do this all.   

 
Although, there are tools in market for vocal and 

facial expression analysis, we have provided Deepfake 
Detection with the above tools in a single package. 
However, this implementation is at POC (Proof of Concept) 
level, one might extend its features to Body Posture 
Detection, Lie Detection, etc.  

 
We have developed a module named Aggregator which 
takes the output of all the three modules and provides a 
detailed analyzed profile of the candidate. Hence, we have 
successfully analyzed the profile of a person based on 
online interaction via videos with its Forensic validity. 
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