
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3174

Forensic Tool for Deepfake Detection and Profile Analysis

Nirnay Khajuria1, Rajas Chavadekar2, Aditya Dhote3, Sanyog Chavhan4

1,2,3,4Dept. of Computer Engineering, Sinhgad College of Engineering (SPPU), Pune, India.
---***--
Abstract - To analyze the genuineness and quality of a
person giving a speech or an interview while proctoring.
Detect any forgery made by deepfake techniques using deep
learning. Create a behavioral profile and analysis of that
person which can be used for judging their peculiarity. In
order to execute this, we have created four modules namely
Face Detection Module, Sound Expression Module, Deepfake
Detection Module and an Aggregator Module which
combines the result of all the three given modules into one
and provides output to the user in the form of a profile. The
basic idea of our project is to present a forensic tool that will
provide Deepfake, Audio and Video expression analysis in a
single package. The system will determine whether the
Candidate is giving a genuine interview or not. There would
be no discrimination during the interview process, this
system will remove all of the biases.

Key Words: deepfake, cyber-forensics, deep-learning,
image processing, audio processing.

1.INTRODUCTION

With increase in deep learning technology, we
have seen advancements in video editing and forgery but
there is also positive development in analysing one’s
interview performance. In current crisis, work from home
culture is increasing, people are not meeting face to face
which gives them chances for making forgery or
deepfaking (identity tampering) in their video stream. In
this scenario, recruiters might anticipate for a single
application or service that will do the behavioural analysis
of a candidate along with forgery detection.

In order to analyse the genuineness and quality of
a person giving a speech or an interview while proctoring.
Detect any forgery made by deepfake techniques using
deep learning. Create a behavioural profile and analysis of
that person which can be used for judging their
peculiarity. The basic idea of our project is to present a
forensic tool that will provide Deepfake, Audio and Video
expression analysis in a single package. The system will
determine whether the Candidate is giving a genuine
interview or not.

The System provides Features as follows:

1) Deepfake Detection
2) Face Expression Analyzer
3) Sound Expression Analyzer
4) Complete Profile Analyzer

The Deepfake Detection module includes first of
all gathering of data, then deepfake data training will be
done, followed by Deepfake Detection. Whereas, in the
Face Expression Analyzer, data gathering will be done
firstly followed by training the model and then predicting
the face expression according to the given user input to
the system.

In the Sound Expression Analyzer Module, first of
all data gathering will be done, then it will be trained so
that it can set an expression mode for the sound sample.
Following this procedure, a feature data will be created for
that sound sample. The input audio frame will be directly
provided to the sound expression analyser. This audio will
be compared with the trained sound sample given from
sound expression trainer and then predictions will be
made for the input audio sample.

The Final prediction of profile will be given as
output in a SRT file.

2. MATHEMATICAL MODEL

 In this section we will construct a mathematical model
that describes the functions of each of our modules in
terms of set relations, input output tuples and domain to
which they belong. We will discuss these domains first and
then after construct their mapping.

2.1 Input Domain

 We have an Audio Video screencapture input so input
varies with time. Consider that is input stream, of two
time-varying tensors,

 () (() ())

Where, () , - () is the audio stream,

and () []
() is the r-g-b video stream.

Where * + are bytes.

2.2 Output Domain

The output is also a stream of tuples which belong to
following output domain,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3175

The Output is composed of following entries:

1) t : time :time at which a reading was taken w.r.t
video.

2) df : Boolean : 1 if deepfake frame else 0.
3) gs : float : genuineness score between 0 to 1.
4) pe : emotion ID : prominent expression found at

time t.

In set theory,

 () * + , -

 *

 +

Let op be output tuple and O is output domain,

 * + , -

Hence op is 4-tuple as follows,

 () (() () ())

2.3 Functions or Modules

Our project or application can be viewed as a
function F that takes in input ip and gives output op.

 () (())

Where mapping

2.3.1: Module 1: DeepFake Detection

 DeepFake detection can be defined as a function
that takes a video frame at time t and gives binary result 1
if deepfake else 0.

 () (())

Where mapping * +

Furthermore, DF is composed of 2 functions:

1) : Face detection, grayscale conversion
and Cropping

2) * + : DeepFake Detection

 ()

2.3.2: Module 2: Face Expression Detection:

 Face Expression detection can be defined as a
function that takes a video frame at time t and gives one of
the expression IDs in E.

 () (())

Where mapping

Furthermore, FE is composed of 2 functions:

1) : Face detection, grayscale conversion
and Cropping

2) : Face Expression Detection

 ()

2.3.3: Module 3: Sound Expression Detection:

 Sound Expression detection can be defined as a
function that takes an audio frame at time t and gives one
of the expression IDs in E.

 () (())

Where mapping

Furthermore, SE is composed of 2 functions:

1) : Mel-Frequency Cepstral
Coefficients features extraction where F is
features set.

2) : Sound Expression Detection.

 ()

2.3.4: Module 4: Aggregator:

 Aggregator is a function that takes in deepfake
reading df, face expression ID ‘fe’, and sound expression ID
‘se’. Let’s say that we define AGG as aggregator function
then,

 () (() () ())

Its mapping is * +

Aggregator has a function to calculate the genuineness
score, GS which takes two arguments,

1) fea : array : array of face expressions for t = t - 5
to t = t

2) se : E : sound expression generated at t = t
recorded every 5 sec.

 () * () +

Genuineness score can be defined as:

 ()
 * +

Further the Aggregator function can be defined as,

 () (() () ())

 (() (() ()) ())

Here prominent expression () ().

Hence the final project function F can be defined as,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3176

 () (())

 ((()) (()) (()))

Which completes our mathematical model.

3. FEASIBILITY ANALYSIS

This subsection discusses on how the algorithms
or structures used in our modules are feasible and can be
implemented mathematically. Here we will analyze the
computational modules we will be using in our
implementation with respect to their space and time
complexity whether it is P or NP complete.

 For this we need to first understand the
fundamental unit of computation we will be using in all of
our modules involved in audio-video processing, the
Convolutional Neural Network which is in turn based on
Neural Networks. So, any inferences we make on neural
networks will implicitly apply on Convolutional Neural
networks and in turn on the higher order models used.
And thus, on the architecture we will be using.

The Neural Network has two main functionalities, forward
propagation and backward propagation. Every operation
in neural network is a matrix multiplication, addition or
function mapping out of which addition and mapping of m
by n matrix has time complexity O(mn) and multiplication
of m by n and n by p matrix has O(mnp) when applied one
element at a time also these operations will produce a
matrix which has finite space complexity i.e.,O(n2). As
Neural network is composed of matrices and its
operations, a Neural network is P complete and hence can
also be effectively further reduced in terms of time by
using parallel computation.

 We are using pytorch library to achieve this which
has functionalities of creating matrices and tensors which
are parallelly computed in dedicated Graphic Processing
Units (GPUs). These processors compute all rows and all
columns at constant time so any operation for matrix
which was taking O(mn) time will take O(1) time with
same space complexity. So, addition and mapping will take
O(1) time and multiplication will take O(n) time, which is
also of polynomial order. It turns out that Neural
Networks, hence convolutional Neural Networks and thus
our models are P-complete.

 From above statements we conclude that our
architecture is feasible with respect to space and time
mathematically.

4. ARCHITECTURE

 The architecture of forensic tool for deepfake
detection and profile analysis is an integrated architecture

of Deepfake Detector, Face Expression Analyzer, Sound
Emotion Classifier and Aggregator.

 The architecture of our forensic tool is shown in
Figure1.

Fig 1: The architecture of the forensic tool

In Deepfake Detection module the image data is

taken from Face Forensics DB downloader and dataset
loader and is given to Trainer Module. The Validation
Module takes this and passes it to the Deepfake Detector.
The cropped faces data is given as input to Deepfake
Detector which compares them with the trained data and
generates binary output 1 or 0.

In Face Expression Detection module, the cropped

face data from the fer2013 dataset and is given to Face
Expression Classifier, simultaneously the captured
screenshot of the candidate is given to Face Expression
Classifier as input which then will compare these
screenshots with the training module data and generate
ExpressionID accordingly.

In Sound Expression Detection the sound data is

taken from RAVDESS dataset and given to Training
module. Trained model is given as input to Sound Emotion
Classifier, and simultaneously audio stream of candidate is
given as input to it. Sound Emotion Classifier will generate
SoundExpressionID by comparing audio stream with
trained data.

The Aggregator module takes input from all three

modules, it will take both ExpressionID and
SoundEmotionID and map them every 5 seconds and will
send binary output to Result Dispatcher. Binary output
from Deepfake Detector is given to the Result Dispatcher.

The Result Dispatcher compares both binary

values and generates a final score which will be given to
the Interface. The Interface will generate the output in an
SRT and mp4 file.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3177

5. IMPLEMENTATION AND TOOL
INFRASTRUCTURE

5.1 Getting Input, Audio Processing and
Aggregator

The video input is provided by the screencapture
by ‘mss’ python module. It captures the entire screen
available. This enables to capture video even from online
interviews or meetings as we may not have direct access
to capture the video stream from browser or video
conferencing application. Every frame is captured and
written in the shared memory on the go. Coming to audio
input, the processing of audio stream takes place in
entirely different process. The sound expression module
then communicates its result (expression enum) to the
aggregator via shared memory in async. Every time after
sound module communicates the genuineness score,
prominent expression and deepfake percentage is
calculated (aggregated) and its subtitle is appended.

5.2 Dumping Output

As specified above the output is in the video and
subtitles file (written by ‘srt’ python module) which gives
the deepfake percentage, genuineness score and
prominent expression for approximately every 5 seconds.
The main reason for such output format is the real time
playback of the recorded video and associated output.

5.3 The Role of Shared Memory

 It is observed that the face and deepfake modules
do not process video frames in real time, i.e., while
processing one frame they may drop some frames for
processing after which they will give their output. In order
to enable real time analysis, we need to keep operation of
video capturing and deepfake, face expression in async
manner in entirely different processes. The videocapture
(from aggregator.py) continuously writes the video stream
in allocated shared memory and the deepfake and face
detector module can get it on demand according to the
pace of their processing.

 However, after processing they need to
communicate their results back to the aggregator so here,
we use another shared memory where these modules will
share their enumerations to the aggregator. The shared
memory utility is provided by the ‘SharedArray’ python
module.

5.4 The Process Launch Sequence

 The diagram below illustrates the launching
sequence of modules in their processes. The hatched
region represents that the module and its libraries are in
loading state.

Fig 2: Process Launch Sequence Diagram

In order to capture and process the incoming

audio and video streams, there is a need to execute their
process in parallel in async manner and then collect their
periodic results into a parallelly running aggregator. The
operating system provides two kernel APIs to execute
tasks in parallel i.e., forking a new process (fork syscall in
posix) or creating a new thread within a same process
(clone syscall in posix). They have their own limitations
so; we will choose what is optimal for our project. For us
memory is a major concern as every module has its own
deep learning framework that consumes memory that may
cause overflows if launched in other thread as threads are
meant for low resource consuming codes. Moreover, the
call stack of threads is limited and may not accommodate
the calls of the deep learning framework. This is the
reason we launch sound expression module separately in
different process as it is totally independent task with
different input device. However, we observed that the
deepfake detection and face expression needed the same
cropped face for processing so we have kept them in the
same process (main process). The videocapture and
collection, aggregation of results in aggregator has to be
done in parallel in async hence we launch it in an entirely
new process.

 Now focusing on the loading time of modules, the
sound expression detector takes more time for loading as
it has to initialize the pulseaudio microphone device plus
its deep learning framework (tensorflow) whereas the
face expression and deepfake detector loads in reasonable
time and aggregator instantaneously loads and halts the
videocapture until the most lately loading module i.e., the
sound expression detector module loads completely and
start capturing microphone. This communication happens
via the shared memory allocated for sharing expression
enums that if there is any non-negative sound expression
enum at that given time.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3178

5.5 The Process Termination Sequence

The diagram below illustrates the termination
sequence of modules in their processes. The hatched
region represents that the module and its libraries are in
de-loading state.

 In order to terminate the ongoing application, we
need to understand that we have two child processes
running viz. the aggregator and sound expression detector
out of which there is huge post processing in aggregator
module in result dispatching (saving srt file and recorded
mp4 video) and audio video synchronization of video for
real time playback. We need to safely interrupt the child
processes to break their processing loops, let them do
their respective post processing, terminate and report to
their main (parent) process which is in the waiting state to
let children complete their tasks.

Fig 3: Process Termination Sequence Diagram

Whenever the main process gets a SIGINT

(Interrupt signal) it interprets that we have to stop the
application. The video loop (that analyzes deepfake and
face expression) gets terminated and the sound expression
and aggregator processes are explicitly sent (kill syscall)
SIGINT so they stop their respective loops and begin post
processing. The associated modules and libraries of main
process are de-loaded and resources are released in
parallel.

 However, in aggregator there is huge post
processing. Firstly, to save the recorded video and dump
the ‘srt’ file and secondly, to synchronize the video, its srt
and audio for real time playback. The algorithm of audio
video synchronization as a part of result dispatcher is
listed below.

algorithm av_sync(video_file, actual_playback_time):

 get video_file duration in video_duration using ffmpeg

 change_ratio := actual_playback_time / video_duration

 scale video_file change_ratio times using ffmpeg

 concat wavfiles sequentially into audio.wav using sox

 get output_video_file by merging video_file and audio.wav using ffmpeg

 return output_video_file

6. CONCLUSIONS

We have introduced a new Forensic Analysis Tool
along with Behavioral Analysis Features such as Face and
Sound Emotion and Detection in a single application that
will do this all.

Although, there are tools in market for vocal and

facial expression analysis, we have provided Deepfake
Detection with the above tools in a single package.
However, this implementation is at POC (Proof of Concept)
level, one might extend its features to Body Posture
Detection, Lie Detection, etc.

We have developed a module named Aggregator which
takes the output of all the three modules and provides a
detailed analyzed profile of the candidate. Hence, we have
successfully analyzed the profile of a person based on
online interaction via videos with its Forensic validity.

REFERENCES

[1] Andreas Rössler, Davide Cozzolino, Luisa Verdoliva,

Christian Riess, Justus Thies, Matthias Nießner,
“FaceForensics++: Learning to detect Manipulated
Facial Images”, New York, United States, arXiv.org,
2019.

[2] Rohit Pathar; Abhishek Adivarekar;Arti Mishra; Anush
ree Deshmukh, “Human Emotion Recognition using
Convolutional Neural Network in Real Time”, Chennai,
India, ICIICT, 2019.

[3] Marco Giuseppe de Pinto; Marco Polignano; Pasquale
Lops; Giovanni Semeraro, “Emotions Understanding
Model from Spoken Language using Deep Neural
Networks and Mel-Frequency Cepstral Coefficients”,
Bari, Italy, EAIS, 2020.

[4] François Chollet, “Xcception: Deep Learning
with Depthwise Seperable Convolutions”, New York,
United States, arXiv.org, 2017.

[5] Bin Zhang; Changqin Quan; Fuji Ren, “Study on CNN in
the Recognition of Emotion in Audio and Images”, ICIS,
Okayama, Japan, 2016.

[6] Ali Aliev, Avatarify-Python. Computer software, 18
May, 2020.

[7] S. Davis, P. Mermelstein, “Comparison of parametric
representations for monosyllabic word recognition in
continuously spoken sentences”, IEEE, New Heaven,
CT, USA, 1980.

[8] Beth Logan, “Mel Frequency Cepstral Coefficients for
Music Modeling”, ResearchGate, Washington, D.C., DC,
United States, November, 2000.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3179

[9] P. Viola, M. Jones, “Rapid object detection using a
boosted cascade of simple features”, IEEE, Kauai, HI,
USA, December. 2001.

[10] Darius Afchar, Vincent Nozick, Junichi Yamagishi, Isao
Echizen, “MesoNet: a Compact Facial Video Forgery
Detection Network”, IEEE, Hong Kong, China, January
2019.

