
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4275

System Verilog/UVM Verification of AMBA APB Protocol

Prameeth.H1, Aayushii Goswami2, Prajwal.M3, Vikas.N.G4, Dr. Rachana.S. Akki5

1 Student, Department of Electronics and Instrumentation Engineering, RVCE, Bengaluru, India
2 Student, Department of Electronics and Instrumentation Engineering, RVCE, Bengaluru, India
3 Student, Department of Electronics and Instrumentation Engineering, RVCE, Bengaluru, India

4 Student, Department of Electronics and Instrumentation Engineering, RVCE, Bengaluru, India

5Assistant Professor, Department of Electronics and Instrumentation Engineering, RVCE, Bengaluru, India
---***--

Abstract - The advancements in Very Large-Scale
Integration (VLSI) technology have enabled packaging of
billions of transistors on a single chip. Consequently, this
has led to the increase in complexity of the System-on-Chip
(SoC) design. One of the major components of SoC are the
bus protocols which are the components that assist in
communication on-chip or off-chip.

In the scope of our research, we focus on a widely used on-
chip bus protocol used for connection and management of
different modules on a SoC i.e., AMBA (Advanced Microcontroller
Bus Architecture). AMBA has several versions including AHB,
APB, AXI etc. AHB, AXI are high performance system buses
used for interconnecting CPU cores, DMA etc. Hence due to
the wide scale usage of AMBA APB protocol it is essential
to reduce the verification time to meet design time
constraints.

This paper presents the architecture of the AMBA APB bus
protocol and verifies the design using a custom built UVM
based testbench to develop a standard AMBA APB
verification IP(VIP) and discuss the obtained results.

Keywords: AMBA, VLSI, VIP, SoC, APB, UVM, Design
Verification.

1. INTRODUCTION

With the advancement of deep-submicrometric technology,
it is now possible to design and build a system-on-a-chip
(SoC) with several intellectual-property (IP) cores while
fulfilling short time-to-market requirements.

Although using reusable IP cores can cut down on design
time, the SoC's high complexity means that testing time
is greatly enhanced [1]. In order to sustain in the
developing silicon industry, verification quality must be
improved while testing costs are kept low. To reduce
silicon overhead caused by design-for-testability (DFT),
it becomes extremely advantageous to reuse on-chip
functional blocks as much as feasible in order to achieve
the shortest feasible test time [2]. Therefore, the most
crucial step in the VLSI design process is verification. Its
objective is to determine errors in the RTL (Register
Transfer Level) design early on so that they don't turn
out to be destructive later on in the design process. The

verification process usually takes up approximately 70%
of the total time [3].

The verification process is similar to how a design is
created. A designer reads a block's hardware Configuration and
human language definition is interpreted, then the logic is
written in a format, normally RTL text as represented in
the SoC design flow in figure 1[4]. To do the same, one
must be familiar with the initial input, the
transformation function, and the output format. This
interpretation is always ambiguous, perhaps due to
different possibilities in missing details in the original
document, or contrasting depictions. Therefore, the first
step of design is to understand the design under
verification. In our research we focus on the AMBA APB
Protocol which is our design under test.

Figure1: SoC Design Flow [4]

The Advanced Microcontroller Bus Architecture is a
standard for designing and developing embedded
processors. AMBA helps in modular system design and is
highly reusable [5]. The peripherals including timers,
UART, PIO, Keypad are of low bandwidth and do not
require a pipelined bus interface and AMBA APB, which
is also non-pipelined, caters to this need [6]. On the other
hand, the CPU(ARM) cores, DMA, high bandwidth memory
require a high performance, high bandwidth bus and
AMBA AHB caters to this need. All the transitions and
transactions are associated with the positive clock edge

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4276

Figure 2: AMBA Bus Architecture [10]

Figure 2 shows the AMBA architecture. Notice the
presence of two buses, namely AHB and APB buses. As
the CPU(ARM) cores, DMA, high bandwidth memory
demand high performance, they are connected to AHB
bus while the low bandwidth peripherals are
interconnected through APB bus [7]. There is an AHB to
APB bridge which connects AHB and APB. All APB
connected peripherals act as slaves while the AHB-APB
bridge (simply APB bridge) acts as the Master and
initiates all the transactions [8].

This paper presents the AMBA APB bus protocol
architecture and proposes a design verification strategy
using UVM-based custom test bench for AMBA APB
verification IP (VIP) development and discusses the
results obtained.

2. METHODOLOGY

In order to perform design verification, it is essential to
know the working and operation of the various components
and hierarchy of the AMBA APB Architecture. In this
section as displayed in Figure 2, we briefly discuss about
the various APB signals, functioning of AMBA APB
Master and Slave, the 3 APB Operating states as well as
the Read and Write transactions. After having a good
understanding of the various details and critical design
aspects of the AMBA APB protocol we proceed to
implement a suitable verification strategy after
understanding the various aspects of UVM and finally,
running the regression to obtain and discuss the results.

Figure 3: Methodology of research

2.1 APB Master

AMBA that connects to low-level peripheral devices has
APB as a part of it. AMBA-APB is made up of two parts:
an APB Master/Bridge and a Slave APB, and it is used for
connecting a large number of slaves.

Figure 4: APB Master [10]

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4277

The APB bridge/Master and APB slave are seen in Figure
2 as block diagrams. On AMBA APB, the APB bridge is
simply a bus master. Furthermore, the APB bridge serves
as Slave on the high-level system shuttle.

The APB Bridge transfers data/addresses from the
System bus to the APB and performs the following tasks.

[1] It latches the address and keeps it current for
the duration of the transfer

[2] The address is decoded and a peripheral pick,

PSELx, is created. During a switch, only one
select signal can be active.

[3] The data is written to the APB using this

method.

[4] The APB data is transferred to the system bus
for reading.

2.2 APB Slave

APB Slave is simple and have a flexible interface which
can be used to multiple slaves. The description of the
APB Slave is explained below.

[1] On either PCLK has rising edge or when HIGH
signal is seen in PSEL.

[2] On either PENABLE has rising edge or when

HIGH signal is seen in PSEL.

[3] The address PADDR, the select signal PSELx and
the PWRITE write signal can be integrated to
decide whether the write operation updates the
register.

[4] The data bus drives the data when PWRITE is

LOW signal and both PENABLE and PSELx are
HIGH signal for the read transfers. The PADDR
decides which register should be read.

Figure 5: APB Slave [10]

2.3. APB Operating States

There are 3 states in the operating status of an APB as
listed below.

[1] STATE 1-IDLE

[2] STATE 2-SETUP

[3] STATE 3-ENABLE OR ACCESS

Figure 6: The 3 states of operating Status [11]

[1] STATE 1- IDLE: There will be no data transfer in the
IDLE state, and considered as default state.

[2] STATE 2- SETUP: In this state relevant PSLEL.x
signal is stated and maintained high, the bus is seen for
only one clock cycle in SETUP state, and always shift to
ENABLE state in the following uprising clock edge.

[3] STATE 3- ENABLE/ACCESS: During this state
PENABLE signal will be stated and also maintained high.
In the course of transition to ENABLE state from the
SETUP state, the write, address including the select
signal remain stable. The bus is seen for only one clock
cycle in ENABLE state, and shift to SETUP state if no
additional transfers are needed. During the transition to
SETUP state from ENABLE state, the write, address and
the select signals can glitch.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4278

2.3 Write Cycle

In the operation of WRITE transfer, the PADDR, PSEL,
PWRITE and the PWDATA signals are stated and made
high at T1 edge of clock, this is called as SETUP cycle.

Figure 7: Write Cycle [11]

The PREADY and the PENABLE signal are stated and
made high in T2 which is the upcoming rising edge of
clock, this is called as ENABLE/ACCESS cycle. At the next
clocks rising edge T3, disable PENABLE signal and if
further data has to be transferred, a high-low transition
happens on the signal PREADY.

2.4 Read Cycle

In the operation of read, the PADDR, PSEL, PWRITE and
the PENABLE signals are stated and made high at the T1
edge of clock, this is called as SETUP cycle.

Figure 8: Read cycle [11]

The PREADY, PENABLE are maintained high also the
PRDATA is read in this period, this is called as
ENABLE/ACCESS cycle.

3. IMPLEMENTATION

As an Engineer doing verification, one has to first go
through the specifications of the hardware, construct a
plan to verify, then use them to create tests that
demonstrate the RTL code correctly to implement the
functionality [4]. By this result, one must not just
comprehend the design and the intent, as the designer
may not have considered all of the corner test cases. So
considering all those is necessary.

However, the complexity of the integrated circuit (IC)
has increased due to an increase in transistors density in
the IC as well as smaller feature sizes and advanced
design tools. Integrated Circuits have entered the era of
SoC wherein all the components of a computer or a
system are integrated into a chip. As a result, the
likelihood of faults in the design is increased [9]. As a
result, it became important to verify the entire system,
its components and communication protocols
thoroughly to avoid design re-spin in the later stages.

The Industry standard UVM (Universal Verification
Methodology) allows the Engineers to build and reuse
verification IP (VIP) and verification environments
quickly [14].

It is now an IEEE standard and consists of a collection of
class libraries specified using System Verilog (IEEE
1800) syntax and semantics. UVM's key goal is to
provide an API platform that can be used through
various projects to assist businesses in developing
flexible, reusable, and scalable testbench structures [12-
13].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4279

It consists of a System Verilog-coded base class library.
By expanding these classes, the verification engineer
may construct various verification components. UVM
also has a number of helpful verification features, such as
the use of macros to execute complex functions and a
factory for object development. The UVM classes used to
verify the designing of the APB protocol are stated
below.

Figure 9: UVM Verification components [15]

3.1 UVM Verification components

[1] Sequence item

The uvm sequence item is used to expand the
transactions. The address and data are both randomly
generated by this part. The field automation macros are
added to this class's data representatives.

[2] Sequences

A collection of transactions is referred to as a sequence.
Users in the sequence class will generate complex
stimuli. These sequences can be mixed, randomized, and
expanded to generate new sequences.

[3] Sequencer

The UVM sequencer serves as a link between the driver
and the chain. It sends the transaction to the driver for
processing and receives the driver's response. It also
serves as an arbitrator for running many sequences in
parallel.

[4] Driver

The driver starts the next transaction request and sends
it down to the lower-level components. It's made by
expanding the uvm driver driver.

[5] Collector and Monitor

The collector derives signal data from the bus, translates
it to transactions, and sends it to the display through the
analysis port for comparison.
[6] Agent

The verification components - engine, monitor, collector,
and sequencer are all instantiated by the agent. It also
uses TLM

connections to bind these components. The agent can
operate in either active or passive mode. The agent
instantiates the driver, sequencer, collector, and monitor
in the active mode of operation, while only the monitor
and collector are instantiated and configured in the
passive mode of operation.

[7] Environment

The Environment class creates and configures all of the
sub-components, including the agents, drivers, and
monitors.

[8] Test

The uvm_component is used to extend the uvm_test. For
a specific verification environment, different testcases
may be developed [15].

3.2 Verification Strategy

The UVM testbench is written which models APB slave as
a memory. The scoreboard component of the UVM
testbench has a local memory:

1. Which is updated in case of write operation
along with APB slave memory (DUT)

2. Whose data is compared against the prdata from

DUT, for the randomised address, indicating a
READ match/fail.

Two sequences namely apb_read_sequence are used for
generation of stimulus following the APB bus protocol
explained the above sections.

4. SIMULATION OF TESTBENCH

On running the regression using the previously
mentioned strategy we acquire the waveforms for the
read and write operation along with a detailed

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4280

scoreboard and UVM report summary which shall be
discussed in the following sections.

[1] Write Operation

Figure 10: Write operation to the AMBA APB slave

Figure 10 shows the write operation to APB slave. As
PWRITE=1, this operation is a APB slave WRITE
operation. As PSEL=1, the data gets written when
PENABLE=1. Therefore, valid data gets written for
addresses 00h, ABh, 10H, 30h as AAAAEEEEh,
FFFFEEEEh, FFFF1111h, 00001111h respectively. Note
that PSEL is tied to logic 1.

[2] Read Operation

Figure 11: Read operation from slave

 Figure 12: Read operation from slave

From figures 11 and 12 it can be observed that
PWRITE=0, indicating a read operation from slave. The

data gets read from slave into PRDATA when
PENABLE=1. Therefore, value of PRDATA changes as
AAAAEEEEh, FFFFEEEEh, FFFF1111h, 00001111h for
read addresses 00h, ABh, 10h, 30h respectively. Note
that PSEL is tied to logic 1

Figure 13: UVM Scoreboard.

Finally, it can be clearly seen that PRDATA equals the
slave data for valid memory addresses in the UVM
scoreboard shown in figure 13.

6. RESULT AND DISCUSSION

The UVM report indicates the summary of results of the
applied verification strategy after running the
simulation. In figure 14 we present the obtained UVM
report that shows 63 UVM info(uvm_info) statements.
Among these, 16 have been issued from UVM_DRIVER,20
from UVM_MONITOR and 24 from UVM_SCOREBOARD.

UVM_ERROR=0 and UVM_FATAL=0 indicate that there
no errors whatsoever and the verification of the stated
design was performed successfully.

The verification strategy utilized in this paper covered all
the critical aspects that are needed to be satisfied for the
correct functioning of the AMBA APB Protocol. The
timing diagrams for the read and write operations were
in tandem with the requirements and constraints of the
protocol, ensuring successful and valid transaction of
data between the components.

Figure 14: UVM report

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 05 | May 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 4281

7. CONCLUSION

This paper gives a detailed overview to the AMBA bus
protocol and exhaustively discusses the architecture of
AMBA APB bus and the Verification Methodology. The
APB bus design is implemented in Verilog HDL whereas
the verification testbench is written in UVM. The design
is verified using this UVM based testbench through
Constrained Random Verification (CRV). The simulation
results from the above figures prove that data
transactions to and from the memory follow the APB
protocol and that the data reads and writes occur from
the same memory location. The UVM report proves that
the scoreboard reads matches the DUT reads after the
memory write operations to scoreboard and DUT
therefore meeting the requirements of the said protocol
constraints.

8. REFERENCES

[1] Y. Zorian, E. J. Marinissen, and S. Dey, “Testing
embedded-core based system chips,” in Proc.
IEEE Int. Test Conf., Oct. 1998, pp. 130–143. J. F.
Li, H. J. Huang, J. B. Chen, C. P. Su, C. W. Wu, C.
Cheng, S. I. Chen, C. Y. Hwang, and H. P. Lin, “A A
hierarchical test methodology for systems on
chip,” IEEE Micro, vol. 22, no. 5, pp. 69–81,
Sep./Oct. 2002.

[2] M. Amory, M. Lubaszewski, F. G. Moraes, and E. I.
Moren, “Test time reduction reusing multiple
processors in a network-on-chip based
architecture,” in Proc. Des., Autom. Test Eur.
Conf., Mar. 2005, pp. 62–63.

[3] Hubert Kaeslin,”Top-Down VLSI Design: From
Architectures to Gate-Level Circuits and
FPGAs”,Elsivier, 2015

[4] Resve Saleh, Steve Wilton, Shahriar Mirabbasi,
Alan Hu, “System-on-chip: Reuse and
integration” In Proceedings of the IEEE (2006),
IEEE, pp. 1050– 1069.

[5] David Flynn, “AMBA: Enabling Reusable On-Chip
Designs”, IEEE Micro, July/August 2002, pp. 20-
27, vol. 17.

[6] Prashant Dwivedi, Neha Mishra, Amit Singh-
Rajput, “Assertion & Functional Coverage Driven
Verification of AMBA Advance Peripheral Bus
Protocol Using System Verilog”, International
Conference on Advances in Electrical,
Computing, Communication and
Sustainable Technologies (ICAECT), 2021

[7] Padmaprabha Jain, Satheesh Rao, “Design and
Verification of Advanced Microcontroller Bus
Architecture-Advanced Peripheral Bus (AMBA-
APB) Protocol”, IEEE- 2021 Third International
Conference on Intelligent Communication
Technologies and Virtual Mobile Networks
(ICICV).

[8] Fu-Ching Yang;Yi-Ting Lin;Chung-Fu Kao;Ing-
JerHuang, “An On-Chip AHB Bus Tracer With
Real-Time Compression and Dynamic
Multiresolution Supports for SoC”, IEEE
Transactions on Very Large Scale Integration
(VLSI) Systems (2011) ,Volume: 19, Issue: 4

[9] Chenghai Ma, Zhijun Liu, Xiaoyue Ma, “Design
and implementation of APB bridge based on
AMBA 4.0”, IEEE International Conference on
Consumer Electronics, Communications and
Networks (CECNet) 2011

[10] Kiran Rawat, Kanika Sahni , Sujata Pandey, “RTL
implementation for AMBA ASB APB protocol at
system on chip level”, IEEE- 2015 2nd
International Conference on Signal Processing
and Integrated Networks (SPIN), 2015.

[11] ARM Limited, ARM IHI 0024B “AMBA 3 APB
Protocol Specification”, 2004.

[12] IEEE Standard for Universal Verification
Methodology Language Reference Manual IEEE
Std 1800.2-2020 (Revision of IEEE Std 1800.2-
2017) Year: 2020

[13] Frank Plasencia-Balabarca, Edward Mitacc-
Meza, Mario Raffo-Jara, C. S. Cárdenas, “A
Flexible UVM-Based Verification Framework
Reusable with Avalon, AHB, AXI and Wishbone
Bus Interfaces for an AES Encryption Module”,
2019 IEEE Latin American Test Symposium
(LATS)

[14] Jaehoon Song, Hyunbean Yi, Juhee Han, and
Sungju Park, “An Efficient SoC Test Technique by
Reusing On/Off-Chip Bus Bridge”, IEEE
Transactions on Circuits and Systems Part I:
Regular Papers (2009)

[15] Lakhan Shiva Kamireddy, Lakhan Saiteja K,
“UVM Based Reusable Verification IP for
Wishbone Compliant SPI Master Core”,
International Journal of VLSI Design and
Communication Systems (2018)

https://ieeexplore.ieee.org/document/9392518/
https://ieeexplore.ieee.org/document/9392518/
https://ieeexplore.ieee.org/document/9392518/
https://ieeexplore.ieee.org/xpl/conhome/9392383/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9392383/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9392383/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9392383/proceeding
https://ieeexplore.ieee.org/xpl/conhome/9392383/proceeding

