
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3039

Design and Implementation of RISC-V Subsystems using Verilog HDL

Shruthi1, Dr. Jamuna S2

1PG Student (M.Tech in VLSI Design and Embedded Systems), Department. of ECE, DSCE Bangalore, Karnataka
2Professor, Department. of ECE, DSCE, Bangalore, Karnataka

---***--
Abstract - RISC-V is a modern Instruction Set Architecture

(ISA) with standard open architecture which is designed for

different applications. RISC-V processor is suitable for

applications in embedded processors, IoT applications,

machine learning, and military applications. To design high-

performance systems, the speed of operations called

throughput and the number of calculations per unit time

become essential. We often go for a technique called

pipelining. Pipelining is a standard feature used in RISC-V

processors. Pipelining involves executing multiple instructions

per cycle. The five-stage pipeline (fetch, decode, execute,

memory, write back) processor is implemented. This work

includes the design of functional blocks of 32-bit RISC-V

processor like Branch Prediction Unit (BPU), Forwarding unit,

Floating point unit, Floating point register. This pipelining

feature may lead to different types of hazards like structural

hazard, data hazard and control hazard in the processor

design. BPU and Forwarding unit are used to handle control

and data hazard respectively. Floating point register unit is

designed to improve the speed of the processor. These

subsystems are used in different stages of pipelining and are

implemented using Verilog HDL.

Keywords – RISC-V ISA (Instruction Set Architecture),

Pipelining, Branch Prediction Unit (BPU), forwarding

unit, Floating point register, Floating point unit, Verilog

HDL.

1. INTRODUCTION

RISC-V is one of the standard free and open architecture

used in different domains like academics and industrial

applications. Nowadays, the processors are evaluated by the

performance, speed of operation, number of calculations per

unit time and Instruction set architecture (ISA).

Pipelining is a unique feature supported in RISC-V ISA. It can

improve the performance of the processor by increasing the

throughput. However, it also introduced hazards to the

processor. The hazard can be categorizes into three different

types: structural hazard, data hazard and control hazard.

These hazards can be handled with the implementation of

functional blocks like Branch Prediction unit, forwarding

unit which handles control hazard data hazard respectively

and there by increases the throughput of the processor. Due

to its open and free ISA this can also be used in military and

defense applications.

This paper includes the design and implementation of sub-

blocks of 32-bit, 5-stage superscalar pipelined architecture.

The sub-blocks include Floating point unit, Branch

prediction unit, forwarding unit, operand logic and floating

point register file. These blocks are implemented in Xilinx

ISE using Verilog HDL.

Section 2 briefs on the related work. Section 3 introduces an

overview of the processor architecture. Section 4 describes

implementation of sub blocks. Section 5 discusses the

simulation results. Conclusion is provided in section 6.

2. RELATED WORK

[2] Briefs on different cases for choosing the RISC-V open

ISA. The different cases include (a).Case for a free open ISA,

(b).Case for RISC as free, open ISA style, (c).Case for using an

existing RISC free, open ISA and (d).Case for RISC-V as the

RISC-free open ISA.

[3] Exposes a 32-bit processor which includes 5 stages of

pipeline. It supports different set of instructions like integer,

atomic and multiply/divide instructions. It has memory

subsystems and memory error control. The design is

implemented on Virtex-board and is able attain 100MHz

peak clock frequency.

[4] Articulates the processor micro architecture design and

the possible consequences of instruction set architecture on

micro architecture design. The simulation of this micro

architect is carried out using Blue-spec Systemverilog and is

synthesized on FPGA. Comparison of the synthesis result is

done with respect to same efforts on RISC-V based

processor.

The work presented in [5] is centered on open source RISC-V

ISA. The processor is designed for aiming low cost embedded

devices. The processor is executed in verilog hardware

description language and is then prototyped FPGA board. It

was able to achieve maximum frequency of 32MHz and the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3040

power is evaluated using Xilinx power analyzer and is found

to be 7.93mW.

In [6] single precision arithmetic operations along with the

simple ALU (Arithmetic and Logic unit), general purpose

registers, program and data memories and complete

instruction set for a pipelined 32-bit RISC processor is

implemented in Altera DE2 FPGA.

3. PROPOSED WORK

Fig-1 shows 32-bit, 5-stage superscalar pipelined

architecture [1]. Instruction Fetch (IF), Instruction decode

(ID), Execute (EX), Memory(MEM) and write-back (WB) are

the different stages of pipelining. In Instruction fetch stage,

program counter (PC) is used to generate program memory.

The program counter value is then utilized to fetch

instructions from IF stage.

Fig-1:5-stage superscalar pipeline architecture [1]

Two instructions are from I-Cache are fetched in issuing

logic and sent to decode stage. Instruction unit issues the

instructions to pipeline, depending on data dependencies

between different instructions. The data that is present in

data memory is read by decode stage and it decodes the

instructions and hence thereby gives select signals for the

multiplexers so that it can feed the data to forwarding unit of

execution stage. Operand and opcode logic are obtained in

the instruction decode stage and are fed to the execution

stage for further operations. In Execution stage of Fig-1,

there are three ALUs out of which two are integer ALUs and

one floating point Unit with the forwarding unit. The ALUs

are responsible to perform arithmetic and logic operations.

Forwarding unit here toggles the multiplexer so that the data

from different stages are used in EX stage. The results from

execution stage are transferred to memory stage when

instructions like load and store are used and for the

instructions other than load or store the results are

forwarded to write back stage. Different register files for

integer and floating point instructions are used in WB stage.

4. DESIGN IMPLEMENTATION OF SUBBLOCKS

This section of paper includes design implementation of

different sub-blocks of processor like floating point unit,

forwarding unit, branch prediction unit, operand logic and

floating point register file.

1). Floating Point Unit (FPU)

This unit is designed to compute different arithmetic

operations on floating point numbers. The floating point unit

that is represented in this work includes three arithmetic

operations; they are addition, subtraction and multiplication.

IEEE 754 standard provides a method for computation with

floating-point numbers [7].

Single precision floating point format occupies 32 bits in

computer memory. The 32 bit format of floating point

number is represented in Fig.2 includes sign bit of 1-bit

length, 8-bit exponent and mantissa is of 24 bits length

among which 23 bits are stored and 1 bit is implicit 1.

Fig-2: IEEE 754 standard format

31st bit is sign bit used to determine the sign of a number. If

sign bit is 1 it denotes negative number and if it is 0 it

represents positive number. Exponent is 8 bit length and is a

signed integer from -128 to 127. Mantissa or significant an

implicit leading bit with value 1 and it has 23 bits to the right

side of binary point.

Floating point multiplication:

X3=X1*X2= (-1)s1 (M1 x 2E1) * (-1) s2 (M2 x 2E2)…..(1)

Equation (1) shows the notation of multiplication. S1 and

S2 represent the sign bits , E1 and E2 represent exponent

bits and M1 and M2 are Mantissa bits of multiplier and

multiplicand X1 and X2 respectively.

The result of multiplication i.e. X3 is obtained by the

following steps.

1. If any one of the operand that is X1 or X2 is 0 or if

both the operands are 0, then the result of

multiplication that is X3 is set to zero.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3041

2. XOR S1 and S2 which are signed bits of the

multiplicand and the multiplier respectively, to

obtain the resultant sign bit.

3. The resultant mantissa (M3) is obtained by

multiplying M1 and M2 (M1*M2), the resultant M3

is then truncated or rounded off for 24 bits.

4. The exponent of the result (E3) is obtained adding

E1 and E2 and subtracting this sum by the bias

value. E3=E1+E2-bias.

5. Normalization of the result obtained in above step is

done by incrementing or decrementing the

exponent.

Floating Point addition and subtraction:

X3 = X1 + X2 = (M1 x 2E1) +/- (M2 x 2E2)…….. (2)

Equation-(2) shows the notation of addition/subtraction.

The result of addition/subtraction i.e. X3 is obtained by the

following steps.

1. If the exponents E1 and E2 are equal, then add the

X1 and X2.

2. Magnitude of X1 should be higher than magnitude

of X2, else interchange both the operands such that

magnitude of X1 is greater than magnitude of X2.

3. Since the magnitude of X1 is greater than X2, the

resultant exponent value is evaluated as E3=E1.

4. Exponents difference i.e. Exponent difference = (E1-

E2), is calculated.

5. To make X1 and X2 equal, left shift the decimal

point of M2 by the difference obtained in previous

step.

6. Depending on sign bits S1 and S2, perform addition

or subtraction.

7. If S1 and S2 are equal then perform addition else

perform subtraction of mantissas.

8. Normalize the resultant mantissa (M3) if needed.

Initial exponent result E3=E1 and the format 1.m3

must be adapted as concerned to the normalization

of mantissa.

2). Branch Prediction Unit (BPU)

This unit is present in fetch stage. It decides the branch

instruction; the branch prediction is carried out in the

execution stage of the pipelining architecture. When the

prediction is predicted wrongly then the PC value will be

updated. To assign the PC value we have next PC logic in

Fetch stage, as shown in Fig-3.

Fig-3: Next-PC Logic [1]

Whenever the PC value returns to the same address or

whenever rollback is declared in decode stage, then PC+4

that is the next program counter value is assigned as the

address of next instruction else it assigns the next PC value

that is PC+8. In the instruction fetch stage, if the prediction is

a branch instruction, then the program counter value of that

particular instruction is loaded from the BPU. And if the

prediction by BPU is incorrect, then the accurate value of

program counter from the memory stage will be loaded [1].

Fig-4: Branch Prediction Issuing Unit [1]

Figure 4 represents the branch prediction issuing unit, which

basically assigns the PC value to branch prediction unit. This

issuing unit for branch prediction is implemented in fetch

stage. If the instruction that is held in decode stage is a

branch instruction, then the program counter value from

hold register is forwarded to branch prediction unit and if

the instruction that is held in decode stage is not a branch

instruction, then the program counter value from instruction

fetch is forwarded to branch prediction unit [1].

3). Forwarding Unit

Forwarding unit is used to control the data hazards

that appear from data dependences from different

stages of pipeline. This unit is implemented in

execution stage.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3042

Fig-5: Forwarding Unit [1]

The processor shown in Fig-1 has 2- integer ALUs and

1-Floating Point Unit and hence it requires three

forwarding unit, one of which is shown in Fig-5. When

the instruction is fetched from MEM and WB at the

same time or when the data hazard occurs between

instructions in MEM and WB stage; the data that is

present in MEM stage is fed as output to ALU as it is

having the latest instruction [1].

4). Operand Logic

Operand and opcode logic is implemented in

Instruction Decode stage. This is accountable for

accessing data that is present in data memory. Based

on the instruction that it accessed from the memory

operands and opcode are generated, which are then fed

to the next stage that is execution stage in which the

operations on operands are performed based on

opcode logic.

5). Floating Point register file

This is present in the write back stage. It includes the

data and address from the memory stage. Data present

in floating point register file is used by floating point

unit of execution stage. For high performance

applications floating point computational logic has

been an essential component [1].

5. RESULTS

The subsystems that are discussed in section III are designed

Verilog HDL using Xilinx ISE and ModelSim Altera-6.4a. The

simulation results for the same are shown below.

Fig-6: Simulation result of multiplication of two floating

point values

Fig-6 shows the simulation waveform of floating point

multiplication for different values of multiplier and

multiplicand. The multiplication result for inputs a=5.3, b

=2.3 and a=8.9 b=5.7 respectively with a delay of 100ns are

shown.

Fig-7 represents the simulated waveform for addition of

floating point number with different values of addends.

Fig-7: Simulated waveform of floating point addition

It represents addition result for inputs a=5.3, b =2.6, a=18.5,

b=89.4 and a=21.6, b=10.2 respectively with a delay of

100ns.

Fig-8: Simulated waveform of floating point subtraction

Fig-8 shows the simulation result of floating point

subtraction for different values of minuend and subtrahend.

It represents the subtraction result for inputs a=12.4, b =8.5,

a=10.5, b=12.5 and a=5.2, b=1.1 respectively with a delay of

100ns.

Fig-9: Simulation result of FPU

The simulation results of floating point unit (FPU) are

represented in Fig-9; it shows different operations

performed on operands based on the select lines. As the

designed floating point unit include only three operations

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3043

like addition subtraction and multiplication the result for

select line value “00” is set to zero. If the select lines are 01,

10 and 11, it performs addition subtraction and

multiplication respectively.

Fig-10: Simulation result of operand logic

Fig-10 shows the simulation result of and operand and

opcode logic.

Fig-11: Simulation result of branch prediction unit

Fig-11 shows the simulation result of a branch prediction

unit. It will update the program counter value.

Fig-12: Simulation result of forwarding unit

The above Fig-12 shows the simulation results of forwarding

unit, which forwards the data from different stages like

decode, memory and write-back stage to ALU in execution

stage.

Fig-13: Simulation result of floating point register file

Fig-13 shows the simulation results of floating point register

file; it outputs the data based on WB address and WB data.

6. CONCLUSION

This paper briefs on the 32-bit, 5-stage superscalar

architecture. The processor supports the pipelining feature

which increases the performance of the architecture. 5-

stages of pipeline are IF, ID, EX, MEM and WB stage. This

work particularly includes the implementation on sub-blocks

of the processor like Floating point unit, Branch prediction

unit, forwarding unit, operand logic and floating point

register file presented in different stages of the pipelined

processor. Implementation of these blocks is done using

Verilog HDL and is simulated in Xilinx ISE.

REFERENCES

[1] Gokulan T, Akshay Muraleedharan, Kuruvilla Varghese,

“Design of a 32-bit dual pipeline superscalar RISC-V

processor on FPGA” 23rd Euromicro Conference on Digital

System Design(DSD) 2020

[2] K. Asanovi and D. A. Patterson, “Instruction sets should

be free: The case for risc-v,” EECS Department, University of

California, Berkeley, Tech. Rep. UCB/EECS-2014-146, Aug

2014

[3] Suseela Budi, Pradeep Gupta, Kuruvilla Varghese,

Amrutur Bharadwaj, “A RISC-V ISA compatible processor IP

for SoC”, International Symposium on Devices, Circuits and

Systems, March 2018

[4] S. Budi, P. Gupta, K. Varghese and A. Bharadwaj, "A RISC-

V ISA compatible processor IP for SoC," 2018 International

Symposium on Devices, Circuits and Systems (ISDCS), 2018.

[5] D. K. Dennis et al., "Single cycle RISC-V micro architecture

processor and its FPGA prototype," 2017 7th International

Symposium on Embedded Computing and System Design

(ISED), 2017.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 08 Issue: 06 | June 2021 www.irjet.net p-ISSN: 2395-0072

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3044

[6] Jinde Vijay Kumar, Chintakunta Swapna, Boya Nagaraju,

Thogata Ramanjappa, “FPGA based implementation of

pipelined 32-bit RISC processor with Floating point unit”,

Journal of Engineering Research and Applications. ISSN :

2248-9622, Vol. 4, Issue 4(Version 5), April 2014, pp.01-07

[7] "IEEE Standard for Floating-Point Arithmetic," in IEEE
Std 754-2019 (Revision of IEEE 754-2008), vol., no., pp.1-84,
22 July 2019

