

EFFECT OF FINE PARTICLES IN THE FRESH PROPERTIES OF GROUT

Amrutha K A¹, Sachin Paul²

¹M.Tech Student, Department of Civil Engineering, Mar Athanasius College of Engineering, Kothamangalam ²Associate Professor, Department of Civil Engineering, Mar Athanasius College of Engineering, Kothamangalam _____***______

Abstract - Grouting is one of the most widely used reinforcement techniques to improve the integrity of structures. A detailed review of existing research related to fresh properties of grout is hereby presented including different types of fine particles, their properties, test methods, and the influence of various types of particles on fresh properties. From this analysis, many relevant fine particle characteristics were discovered to have a positive influence on the fresh property of grout. From this study, we have to obtain a cement grout with improved performance. Properties like flowability, bleeding, compressive strength, and shrinkage of cement grouts have been studied. Rheological parameters were also studied to explain the grout workability.

Key Words: Grout, Fresh Property, Rheology, Fine Particles, Additives

1.INTRODUCTION

In the masonry research field, grouting is defined as the introduction of a liquid form of binder into a masonry building, to fill the cracks and voids in the structure and compensate mechanical strength of the structure. Grouting is one of the most widely used reinforcement techniques to improve the integrity of these structures. The main factors affecting the grouts reinforcement effect is, injectability (fluidity) is an important characteristic to ensure that the grouts can well fill the cracks and voids. Stability (bleeding, shrinkage), mechanical properties, and compatibility between grouts and consolidated matrix are also essential. The poor performance of these properties may cause the failure of the grouting. The performance of fresh grouts is as important as that of the grouts in a hardened state. At present, many kinds of grouting materials, including cementbased grouts and lime-based grouts have been applied in the grouting reinforcement project of building structures. Cement-based grouts are the most widely used reinforcing material in modern architectural structures, such as road, bridge, pipe, house, and another municipal engineering.

Cement grouts contain cement and water with or without sand and admixtures. Admixtures are added to improve the properties of grout like flowability, permeability, strength, etc. Superplasticizers (SP) is the most common admixture used in grout mixes. Sand if used will require more water and superplasticizer to provide the requisite workability. Cement grouts have many areas of application in construction. It is utilized as a ground improvement technique attained by injecting into the

ground. Grouting has a lot of applications in repairing masonry structures. Grouting using cement slurry to fill up the voids and cracks in the poor-quality porous concrete is the most simple and economical remedial measure. The grouting technique is widely used in filling post-tensioning ducts of prestressed concrete structures. It is important that the grout mix used must be flowable to ensure proper filling of the ducts and should have low bleeding to limit the free water nearby the tendons. In short, a grout should satisfy the ACI definition as "a mixture of cementitious material and water, with or without aggregate, proportioned to produce a pourable consistency without segregation of the constituents."

This paper represents presents various types of fine particles, experimental test methods, and obtained results of each method at which some are evaluated.

1.1 Research Objective

This study aims to review existing literature on experimental testing of cementitious grout and the influence of fine particle additions on fresh properties of the grout. The literature presents various types of fine particles, experimental test methods, and obtained results of each method at which some are evaluated in the present study. The materials used, replacement percentage, and the watercement ratio of previous studies are included in a database.

2. MATERIALS

No.	Journal	Materials Used	Replacement %
1	(Baltazar et al. 2014)	Natural Hydraulic Lime	
	w/b 0.5	Silica Fume	2%
		Polycarboxylate- Type Superplasticizer	0.8%
2	(He et al. 2018)	Portland Cement	0.5 w/c

🥼 International Research Journal of Engineering and Technology (IRJET) 🛛 🤅

e-ISSN: 2395-0056 p-ISSN: 2395-0072

IFT	Volume	08	Icculo	06	Inno	2021	
JLI	volume.	00	13300.	00	June	2021	

www.irjet.net

	0.5	Furnace Slag	95%		
		Polycarboxylate Superplasticizer	0.2%		
3	(Huang	Portland Cement	w/c+fly ash		
	2001)	Fly Ash	0.5, 0.7, 0.9, 1.1		
		Polypropylene (PP) Fiber	1%		
		Superplasticizer	1%		
4	(Huang 1997)	Portland Cement	w/c+fly ash		
	1777	Flyash	0.4, 0.5, 0.6, 0.7, 0.8		
		Polypropylene (PP) Fiber	1%		
		Condensed	5%		
		Silica Fume			
		Bentonite	1%		
5	(Khayat and Yahia	Cement	0.4 w/c		
	1997)	Naphthalene-Based HRWR	0, 0.075, 0.12, 0.25		
		Rheology-	0, 0.03, 0.05,		
		Admixtures (Welan	0.075		
		Gum)			
6	(Li et al. 2019)	Cement	1 w/c		
	2017)	Nano Silica	0-3%		
		Naphthalene Superplasticizer	0, 0.5%, 0.75%, 1%		
7	(Sonebi et al. 2020)	Portland Cement	w/b 0.34, 0.39, 0.44		
		GGBS	60%, 70%, 80%		
		Anhydrite	0%, 10%, 20%		

8	(Sowmini and B 2018)	OPC	w/c 0.3, 0.35, 0.4		
	2010)	Ultra-Fine Slag	0% 5% 10% 15%		
		Sulphonated	0.4%, 0.6%,		
		Naphthalene	0.8%, 1%,		
		Formaldehyde	1.2%		
		Poly Carboxylate Ether	0.6%, 0.85%, 1.1%, 1.35%, 1.6%		
9	(Xiang et al. 2018)	GGBS Fly Ash	Equal amount & replaced by Limestone powder		
		Limestone Powder	0%, 5%, 10%, 20%		
10	(Xu et al. 2018)	Natural Hydraulic Lime Silica Fume Silicon-Acrylic	NHL 100 NHL80%- SF20% NHL80%- SAL20%		
		Latex	NHL60%- SF20%- SAL20%		

3. TEST FOR FRESH PROPERTIES OF GROUT

Flowability is an important property indicating the workability of grout to ensure efficient pumping and injection.

Grout workability can be characterized by the Flow cone test, according to ASTM C939. Based on this standard the measurement of the time of efflux of a specified volume of grout from a standardized flow cone is measured. The efflux time was determined by measuring the time taken for 1 L out of 1.7 L grout to flow through the flow cone. Flow time is connected to the grout fluidity, meaning that the longer the flow time, the lower is the grout fluidity.

A similar test which is widely adopted as a workability test for the specification and quality control of cement-based grout is the marsh cone test. As per EN 445, the fluidity of grout, expressed in seconds, is measured by the time necessary for a stated quantity of grout (1 ltr) to pass through the orifice of the cone. Marsh's time informs

L

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

about the fluidity of the grout but it does not provide the parameters of the rheological behaviour.

As per EN 445, a spread test was conducted by placing a cylinder on a glass plate. The spread diameter was measured after grout spread became constant value after lifting the cylinder.

Mini slump test was carried out using a mini-slump cone of top diameter 19 mm, bottom dia 38 mm and height 57 mm. The grout mix was poured into the cone until it gets filled. The mix is allowed to spread by lifting the slump cone. The spread diameters in orthogonal directions were measured and the average spread diameter calculated.

The bleeding test was based on ASTM C940. After mixing, a 1,000 mL glass graduated cylinder was filled with 800 mL of grout and covered to prevent water evaporation. For each grout, the thickness of the bleeding water was measured after, complete sedimentation. The final bleeding was calculated using the equation

Final bleeding%= V_w/V_i×100

V_i = volume of sample at beginning of the test, mL, V_w = volume of decanted bleed water, mL

These are the main tests that can conduct to study the effect of fine particles in the fresh properties of the grout.

4. TEST METHODS AND RESULTS

Table -2: Test Results from Journals

NO	JOURNAL	TESTS	RESULTS
1	(Baltazar et al. 2014)	Wettability Measurement	KESULIS Significantly decrease of the contact angle between grouts with and without replacement of Lime by silica fume. No noticeable change was observed in contact angles with increasing silica fume
		Marsh Cone Test	replacement dosage. An increase of silica fume dosage leads to an increase in grout flow time
		Mechanical Strength	For silica fume dosages higher than 2% there is a slight increase in mechanical strength and the maximum strength value reached 10%.
2	(He et al. 2018)	Setting Time	Both initial setting time and final setting time gradually decrease as GS(acquired by cyclone

			dust collector) dosage increases while the WS (vertical stirred mill)system presents the opposite tendency.
		Electrical Resistivity	The electrical resistivity of WS specimens develop at a faster rate than GS
		Compressive Strength	Adverse impact on compressive strength gain when the slag dosage increases. But GS replaced by 90% presents a positive effect.
		Porosity	GSPC mixtures have a greater porosity than that of WSPC
3	(Huang 2001)	Viscosity	The apparent viscosity at any shear rate was decreased as the amount of SP increases
		Flow Cone Test	SP is found to be effective in improving the flow property of grouts
		Setting Time	1% SP delays the initial and final setting times by 2–4 h, depending on the water/solid ratio. The addition of PP fiber shows an accelerating effect on the setting times of grout mixes.
		Bleed	Water/solid ratio up to 0.5, the addition of PP fiber to the grout slightly increases the final bleed. The incorporation of SP Increases the compressive strength of the grouts, especially for mixes with a high water/solid ratio. Slight reductions in compressive strength can be observed with the use of PP fiber.
		Compressive Strength	No significant difference in the total porosity exists between grouts containing PP fiber.
		Water	The addition of PP fiber

ISO 9001:2008 Certified Journal

L

Page 3626

Т

International Research Journal of Engineering and Technology (IRJET)

e-ISSN: 2395-0056 p-ISSN: 2395-0072

IRJET Volume: 08 Issue: 06 | June 2021

www.irjet.net

		Permeability Porosity	shows an increasing effect on the permeability of grouts. Grouts containing SP have a low coefficient of permeability. Significant reductions in total porosity and pore size were observed in mixes containing SP		5	(Khayat and Yahia 1997)	Mini Slump Flow Time	fiber and silica fume perform well under sulfate attack within the range of water/solid ratio investigated. For a given concentration of RMA, the addition of HRWR enhances fluidity which is reflected in a
4	(Huang 1997)	Flowability Setting Time	The addition of PP fiber and bentonite shows a greater effect on reduction in flow, at low water/solid ratios. The 3 additives had a negligible effect on the initial and final acting				Washout Mass Loss	reduction in flow time and an increase in minislump spread. The washout resistance is enhanced by the increase in RMA dosage and reduction in HRWR
		Bleeding	times. The addition of PP fiber increases the final amount of bleeding. Silica fume and bentonite are both very effective in reducing bleeding.	-			Viscosity Forced Bleeding	The increase in the dosage of RMA is more effective in increasing viscosity at a low shear rate than that at a high shear rate. Combinations of RMA and HRWR can secure
		Porosity Resistance To	The pore structure of grouts with silica fume is found to be finer than that of non-silica fume grouts. Grouts containing silica				Initial Setting	high resistance to forced bleeding. The combined effect of RMA-HRWR delays the initial setting of cement grout.
		Wetting– Drying Cycles	fume are more sensitive to shrinkage and subjected to expanding-shrinking		6	(Li et al. 2019)	Shear Strength	The addition of 3.0% nano-SiO ₂ improved the shear strength parameters.
			damage as the water/solid ratio decreases. It is recommended that the amount of silica fume be reduced for grouts with				Microstructure Characteristic	The addition of 3.0% nano-SiO ₂ led to a better filling of microvoids, forming a denser structure than the referenced grouted specimens.
			water/solid ratios below 0.7 which are to be used in areas undergoing wet-dry cycles.				Rheological Properties	Groutscontainingnano-SiO2alwaysexhibitedhigherviscosity.The optimal SP dose
		Resistance To Sulfate Attack	As the water/solid ratio increases, the control and bentonite- added grouts show obvious deterioration after exposure to sulfate solution.				Flow Spread	levels, 1.5%, and 0.75% were recommended for superfine cement grouts with and without nano-SiO2 addition With the addition of SP
			Grouts containing PP				and Flow Rate	the flow spread and

ISO 9001:2008 Certified Journal | Page 3627

International Research Journal of Engineering and Technology (IRJET)Volume: 08 Issue: 06 | June 2021www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

flow rate were		the W/B ratio is
increased significantly		increased the bleeding
Reading Crout containing nano-		will also increase
SiQ the blooding was		Similarly if a W/P ratio
SIO ₂ , the bleeding was		Similarly, if a w/brauo
relatively lower (0.5-		is selected and the
		anhydrite content is
These grouts possessed		increased the bleeding
higher viscosity and		will again increase.
poor fluidity.	Permeability	Increased W/B and
Setting Time The addition of nano-		AHN had the greatest
SiO_2 can promote the		primary effect on
gelling process of C-S-H		permeability at 1 min.
gels, thus reduced the		It seems there is an
setting time of the		optimum reached at
sediments		W/B = 40 and AHN at
Shrinkago Shrinkago of grout with		17%
Sill likage Sill likage of grout with	Mini Clump	It onhances the
then that without and D	Toot	flourability
than that without and b	Test	nowability
nano-SiO ₂ with the 2018)		characteristics of SNF
addition of SP, the		based grouts at 0.35
shrinkage decreased, as		w/c.
the grout had more		It enhances the
water to finish the		flowability
hydration.		characteristics of PCF
Grouting Increased grouting		based grouts at 0.30
Effectiveness of		w/c.
superfine cement grout	Marsh Cone	0.3 w/c ratio, 5%
with nano-SiO ₂ and SP		replacement of OPC
addition		with ultra-fine slag
7 (Sonebi et Mini Slump Mini-slump increased		(UFS)showed an
al. 2020) Test significantly when the		increasing trend in
dosage of W/B and		flow time
ANH increased.	Bleeding	There is a considerable
Marsh Cone An increase in W/B and	0	reduction in bleeding
ANH or a reduction in		with UFS addition
CCBS led to decreasing	Compressive	PCF mixes showed
the Marsh cone	Strength	slightly higher
floutime	Strength	strengths than SNE
IIOWUIIIe		miuog
Conesion Plate Increased W/B led to a	Charles and	Inixes.
aecreasea cohesion	Sinnikage	ror SINF Dased grouts,
plate value.		shrinkage rate has
An increase in GGBS		reduced by 59% at
increased the cohesion		10% cement
plate value.		replacement with UFS,
Increased ANH caused		whereas for PCE based
a reduction in the		mixes a reduction of
cohesion plate.		42% at 15%
Plastic Increased W/B had		replacement was
Viscosity approximately a 4.4		attained.
times greater influence 9 (Xiang et	Rheology	The addition of
on reducing plastic al. 2018)	(Rheometer)	limestone powder did
		not change rheological
viscosity than		not change incological
viscosity than increased ANH or		parameters
viscosity than increased ANH or decreased GGBS		parameters But GGBS & FA
viscosity than increased ANH or decreased GGBS Induced It can be seen that		parameters But GGBS & FA provides enhanced
viscositythan increasedANHor decreased GGBSInducedIt can be seen that BleedingBleedingwhen an anhydrite		parameters But GGBS & FA provides enhanced rheology.

ISO 9001:2008 Certified Journal

5. FRESH PROPERTIES OF GROUT

5.1 Initial and Final Setting Time

The time required for grout to achieve the initial and final set is of great importance in the field. The initial setting time represents the time at which fresh grout can no longer be properly handled or injected; and the final setting time approximates the time at which hardening and development of strength begin. In the field, the setting times provide a guide of available time for an injection of a given batch before it must be discarded. Also, a very short and controllable set time may be required for injection into a formation with a water flow to avoid washing the grout out before it hardens. The influence factors of initial and final setting time mainly include particle size of cementitious material and dissolution and sedimentation rate of ions from particles.

5.2 Bleeding

Bleeding is the appearance of water on the surface of the grout during the early stage of cement hydration. It is a form of segregation resulting from the inability of the solid particles to hold all mixing water in a dispersed state as the solids settle. Injection of grout mixes exhibiting excessive bleed may leave numerous uncontrolled open channels within the grouted mass, which leads to weakness, porosity, and a lack of durability. Grout has good behavior if the bleeding rate is less than 5% (Xu et al. 2018). The water/solid ratio has a great effect on the bleeding of the grout. Stable cement grout must be used in practice because unstable grout may lead to a partial filling of fracture due to its high bleeding. Excessive bleeding can weaken the grout by increasing porosity, thus affecting durability.

5.3 Flowability

It is an important property indicating the workability of grout to ensure efficient pumping and injection. The time needed for a grout sample to flow through the Marsh cone is proportional to the viscosity of the cement grout; the flow time becomes an index of fluidity, so the longer the flow time, the lower the fluidity. The flowability is an important parameter relative to grout-mix design. Good flowability or low viscosity grouts are preferred for injection into fine fissures, or to increase the distance of penetration into fractures.

5.4 Rheology

Grouts with low viscosity are preferred for penetrating fine fissures or long distances. High-viscosity grouts find applications in injection into wider fractures or limited depths. Due to the high specific surface area of superfine particles, the hydration reaction will be fast, which causes high viscosity. Higher viscosity grouts might be preferred to limit penetration or fill wider fractures. The hydration was improved by superfine particles and the superfine particles can be easily infilled.

5.5 Compressive Strength

Compressive strength is an indication of grout quality to its bond and shear strength. It is important to ensure the quality of grout used. The compressive strength of the grout is a property that relates directly to the structure of the cement paste and provides a good indicator of its quality of the hardened grout. The flexural strength is an important property because underground containment barriers are frequently subjected to high lateral earth pressure.

5.6 Pore Structure

The pores in cement grout form a continuum and the pore structure have been used in predicting permeability and durability of cement pastes. The pore structure is a major component of the microstructure that affects water permeability and durability of cement grouts. Particles finer than 3 micrometers led to the reducing of pores in hardened cement pastes

5.7 Water Permeability

The major function of subsurface grout barriers is to prohibit the migration of groundwater flow in or out of the waste. Most deleterious reactions, including sulphate attack, corrosion, alkali-aggregate reactions, and freezing and thawing, involve the ingress of water or aggressive solutions. Impermeable grouts not only provide hydraulic isolation but also enhance durability. Therefore, permeability is the most important property of watertight and durable grout barriers in aggressive underground environments.

6. CONCLUSIONS

A review covering existing research on grout properties in cement-based materials and lime-based materials was carried out to analyse the influence of the addition of different types of fine particles. The review indicates the desirable properties that grouts should possess as good flowability, reduced bleeding, not too short initial setting time, adequate strength, and durability.

Fineness is an important element in achieving the highest strength performance. Cement grouts used for crack injection, anchorage sealing, and post-tensioning applications are proportioned to exhibit high flowability to facilitate casting and adequate cohesion to prevent phase separation and bleeding.

Based on the review, conclusions that can be made are: by adding superplasticizers and fine particles in the grout can reduce the water-cement ratio and produce a higher strength than conventional grout. It reduced the final bleeding of grout or incorporating additives can effectively eliminating bleeding. The higher fluidity made the grout easier to inject into the fracture. The use of the waterretentive grouting admixture seems to resolve the problem of water separation from cement grout.

ACKNOWLEDGEMENT

This study is part of research on the fresh properties of the grout. The authors would like to acknowledge the support from Sachin Paul (Associate Professor, MACE) who gave guidance and support to complete this work

REFERENCES

- Baltazar, Luis G., Fernando M.A. Henriques, Fernando Jorne, and M. T. Cidade. 2014. "Combined Effect of Superplasticizer, Silica Fume, and Temperature in the Performance of Natural Hydraulic Lime Grouts." Construction and Building Materials 50: 584–97. https://doi.org/10.1016/j.conbuildmat.2013.10.005.
- [2] Huang, Wei Hsing. 1997. "Properties of Cement-Fly Ash Grout Admixed with Bentonite, Silica Fume, or Organic Fiber." Cement and Concrete Research 27 (3): 395–406. https://doi.org/10.1016/S0008-8846(97)00032-X.

- [3] .2001. "Improving the Properties of Cement-Fly Ash Grout Using Fiber and Superplasticizer." Cement and Concrete Research 31 (7): 1033–41. https://doi.org/10.1016/S0008-8846(01)00527-0.
- [4] Khatami, Hamidreza, and Brendan C. O'Kelly. 2018. "Prevention of Bleeding of Particulate Grouts Using Biopolymers." Construction and Building Materials 192: 202–9.

https://doi.org/10.1016/j.conbuildmat.2018.10.131.

- [5] Khayat, K. H., and A. Yahia. 1997. "Effect of Welan Gum-High-Range Water Reducer Combinations on Rheology of Cement Grout." ACI Materials Journal 94 (5): 365–72. https://doi.org/10.14359/321.
- [6] Li, Wenshuai, Faiz U.A. Shaikh, Lianguo Wang, Yinlong Lu, Bin Wang, Chongyang Jiang, and Ya Su. 2019. "Experimental Study on Shear Property and Rheological Characteristic of Superfine Cement Grouts with Nano-SiO2 Addition." Construction and Building Materials 228.

https://doi.org/10.1016/j.conbuildmat.2019.117046.

- [7] Mahmood, Wael, Ahmed Mohammed, and Kawan Ghafor. 2019. "Viscosity, Yield Stress and Compressive Strength of Cement-Based Grout Modified with Polymers." Results in Materials 4 (October): 100043. https://doi.org/10.1016/j.rinma.2019.100043.
- [8] Sowmini, Gopinathan, and Anand K B. 2018. "Properties of Cement Grout Modi Fi Ed with Ultra- Fi Ne Slag." Frontiers of Structural and Civil Engineering 12 (1): 58– 66.
- [9] Xiang, Jichun, Leping Liu, Xuemin Cui, Yan He, Guangjian Zheng, and Caijun Shi. 2018. "Effect of Limestone on Rheological, Shrinkage and Mechanical Properties of Alkali – Activated Slag/Fly Ash Grouting Materials." Construction and Building Materials 191: 1285–92. https://doi.org/10.1016/j.conbuildmat.2018.09.209.
- [10] Xu, Shuqiang, Qinglin Ma, Julin Wang, and Lele Wang. 2018. "Grouting Performance Improvement for Natural Hydraulic Lime-Based Grout via Incorporating Silica Fume and Silicon-Acrylic Latex." Construction and Building Materials 186: 652–59. https://doi.org/10.1016/j.conbuildmat.2018.07.056.
- [11] (Aboulayt et al. 2018; Baltazar et al. 2017; 2014; De la Varga et al. 2018; Gökyiğit-Arpaci et al. 2019; Güllü et al. 2019; He et al. 2018; Huang 2001; 1997; Khatami and O'Kelly 2018; Khayat and Yahia 1997; Li et al. 2019; Mahmood, Mohammed, and Ghafor 2019; Nguyen, Remond, and Gallias 2011; Olgun et al. 2020; Shannag 2002; Sonebi et al. 2020; Sowmini and B 2018; Xiang et al. 2018; Xu et al. 2018)