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Abstract - Deep neural networks have become the 
approach of choice in a multitude of domains, especially 
computer vision related tasks like image classification, 
localization and segmentation. However, numerous 
demonstrations have shown that deep neural networks may 
be easily deceived by precisely perturbing pixels in an image, 
which is commonly referred to as an adversarial attack. As a 
result, a considerable amount of literature has evolved on 
defending deep neural networks against adversarial 
examples, with approaches for learning more robust neural 
network models or detecting malicious inputs being 
proposed. Oddly, while considerable attention has been 
devoted to defending against adversarial perturbation 
attacks in the digital space, there are no effective methods 
specifically to defend against such physically-realizable 
attacks. We study the problem of defending deep neural 
network approaches for image classification from physically 
realizable attacks. First, we demonstrate all the physically 
realizable attacks that have come up recently and tabulate 
their attack performance on different datasets. Then, we 
discuss the existing defenses against physical attacks, their 
robustness, and their shortcomings. Finally, we discuss the 
challenges faced by most of the current defenses and present 
future research perspectives needed to achieve true 
adversarial robustness. 
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1.INTRODUCTION 
 
Computer Vision is the study of how computers can 
extract high-level information from digital photographs or 
films. Various categorization challenges make up a large 
part of the field of Computer Vision. The task of providing 
a label to an image is known as image classification. 

The approaches for handling classification problems have 
been widely researched in both academic and commercial 
businesses as a core challenge in computer vision and 
machine learning, and significant progress has been made. 
Convolutional neural networks (CNNs) are the most 
popular picture classification algorithms, with better-than-
human performance on a variety of benchmark datasets, 
while their real-world performance across new 
institutions and curated collections is still unknown. Fig 1 
shows a demonstration of a CNN being used for the image 
classification task. 

 

 

Fig 1. CNN being used for Image Classification. 

State-of-the-art effectiveness of deep neural networks has 
made it the technique of choice in a variety of fields, 
including computer vision, natural language processing 
and speech recognition. However, there have been a 
myriad of demonstrations showing that deep neural 
networks can be easily fooled by carefully perturbing 
pixels in an image through what have become known as 
adversarial example attacks. In response, a large literature 
has emerged on defending deep neural networks against 
adversarial examples, typically either proposing 
techniques for learning more robust neural network 
models, or by detecting adversarial inputs. 
 
Adversarial examples are inputs to machine learning 
models that an attacker has intentionally designed to 
cause the (trained) model to make a mistake [1]. 
Adversarial images appear visually and semantically the 
same to us, but the model ends up predicting the wrong 
class with very high confidence, which is worrying. Fig 2. 
gives an example of an adversarial image created to fool 
the classifier [2]. 
 

 

Fig 2. Adversarial image being used to fool the classifier. 

 
The size of the perturbation is in the core of the 
adversarial attack, a small perturbation is the fundamental 
premise of such models. When designing an adversarial 
example, the attacker wants the perturbed input to be as 
close as possible to the original one, in the case of images, 
close enough that a human can not distinguish one image 
from the other.  
• Perturbation Scope: The attacker can generate 
perturbations that are input specific, in which we call 
individual, or it can generate a single perturbation which 
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will be effective to all inputs in the training dataset, which 
we call universal perturbation.  
• Perturbation Limitation: Two options are possible, 
optimized perturbation and constraint perturbation. The 
optimized perturbation is the goal of the optimization 
problem, while the constraint perturbation is the set as the 
constraint to the optimization problem.  
• Perturbation Measurement: Is the metric used to 
measure the magnitude of the perturbation. The most 
commonly used metric is the lp-norm, with many 
algorithms applying l0, l2, l∞ norms. 
 
Particularly concerning, however, have been a number of 
demonstrations that implement adversarial perturbations 
directly in physical objects that are subsequently captured 
by a camera, and then fed through the deep neural 
network classifier [3].  
 
Properties of Physically Realizable Attacks [12]: 
1. Attacks can be implemented in physical space (eg: 
putting a sticker on a stop sign) 
2. Attacks should have low suspiciousness 
3. Attacks cause misclassification of SOTA neural network 
 
Among the most significant of such physical attacks on 
deep neural networks are three that we specifically 
consider here:  
1. the attack which fools face recognition by using 
adversarially designed eyeglass frames  
2. the attack which fools stop sign classification by adding 
adversarially crafted stickers  
3. the universal adversarial patch attack, which causes 
targeted misclassification of any object with the 
adversarially designed sticker (patch).  
 
While much emphasis has been paid to guarding against 
adversarial disturbance attacks in the digital realm, no 
viable strategies for fighting against comparable physical 
attacks exist. 
 
The goal of this review paper is to raise concerns and 
awareness about the dangers of physically-realizable 
attacks. We study the current physical attacks, their threat 
models and methodology and success rate. Then we 
evaluate performances of some defences against these 
attacks. We conclude by discussing the challenges faced by 
most of the current defenses and present future research 
perspectives needed to achieve true adversarial 
robustness. 
 

2. Physical Adversarial Attacks 
 

2.1 Fooling Face Recognition Systems 
The goal of this attack [12] is to fool Face Recognition 
Systems (FRS). Here, the attacker is allowed to change 
only the physical objects, not individual pixels. The 
attacker can’t control camera position, lightning, etc. The 

attack should be inconspicuous, i.e., the defender shouldn’t 
notice the attack. 
 
Threat model: 
They assume an attacker who gains access to the pre-
trained FRS to mount a dodging (untargeted) or 
impersonation (targeted) attack. The adversary cannot 
“poison” the FRS by altering training data, injecting 
mislabeled data, etc.  
 
Adversaries can alter only the composition of inputs to be 
classified; attacks should be physically realizable. It 
assumes a white-box scenario: the attacker knows the 
internals (architecture, weights, feature space) of the 
system being attacked 

 
Full attack approach: 

● Train a model for face-recognition (eg: VGG, 
OpenFace) 

● Pick attacker and target (for targeted attack) 
● Generate eyeglasses using the discussed approach 

for attack 
● Print the eyeglasses 
● Collect image(s) of attacker wearing the 

eyeglasses 
● Classify the collected images 

 
Success metric: fraction of images misclassified as target. 

Fig 3. Fooling FRS. 
 

2.2 Fooling Road Sign Classifier 
In this attack, the attacker adds physical perturbation to 
road signs in order to cause misclassification in the 
vehicle's road sign classifier [5]. 
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Fig 4: Fooling Road Sign Classifier. 

 
Their threat model assumes a white-box scenario, where 
the adversary has access to the network architecture and 
weights. 
 
Attacker does not have control over the vehicle’s systems, 
but is able to modify the objects in the physical world that 
a vehicle might depend on for classification. 
 
It can be difficult to carry out a successful adversarial 
attack on real-world classifiers. It was discovered that 
when hostile images were treated to small changes, their 
effectiveness was reduced. When an adversarial item is 
put in a real-world setting, it may be seen from various 
perspectives and under various lighting conditions. All of 
those transformations, some of which can be malicious, 
must be survived for a successful attack. Because of the 
difficulty of the endeavour, several researchers concluded 
that physical adversarial attacks are not practical and 
should not be regarded a danger.To face the challenge of 
performing adversarial attacks in the physical world 
Athalye et al. have proposed the Expectation Over 
Transformations method, shown in Fig 4.  

 
2.3 Adversarial Patch 

This is a method to create adversarial image patches in the 
real world that are [6]: 

● Universal: can be used to attack any scene 

● Robust: work under a wide variety of 
transformations 

● Targeted: can cause a classifier to output any 
target class 

 
These adversarial patches may be printed, placed in any 
scene, photographed, and then presented to image 
classifiers; they cause the classifiers to disregard the rest 
of the scene and report a certain target class. 

 
Fig 5: Adversarial Patch. 

 
The attacker crafts perturbations that are not bounded by 
an ε value but are bounded to a small region or location in 
the image. This approach enables attackers to launch a 
physical-world attack without knowing the lighting 
circumstances, camera angle, classifier type being 
attacked, or even the other items in the scene.It 
successfully fools the classifier in both white-box and 
black-box settings (black-box setting requires a larger 
patch size for effective transferability). 
 
The significance of this attack is that the attacker does not 
need to know what image they are attacking when 
generating it. Following the creation of an adversarial 
patch, it might be widely distributed via the Internet for 
other attackers to print and utilise. Additionally, because 
the attack uses a large perturbation, the existing defense 
techniques which focus on defending against small 
perturbations may not be robust to larger perturbations 
such as these. Indeed recent work has demonstrated that 
state-of-the art adversarially trained models on MNIST are 
still vulnerable to larger perturbations than those used in 
training either by searching for a nearby adversarial 
example using a different metric for distance, or by 
applying large perturbations in the background. 

 
3. Physical Adversarial Defenses 
 

3.1 Defense by Pre-processing 
Watermark removal: An image has been corrupted 
through scratches or random noise and the task is to 
restore the image and remove such noise. 
 

 
Fig 6: Watermark removal. 

The problem of removing visible localized adversarial 
perturbations (as seen in adversarial patches) is similar to 
the problem of watermark removal - we have a corrupted 
copy of an image and wish to remove the noise and restore 
the image [11]. 
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Steps: 
1. Construct a saliency map of the image using the 

guided backpropagation method. 
2. Use a combination of erosion and dilation to 

remove small “holes”. 
3. Find the contour area of positive regions within 

the updated saliency map, and if the contour area 
is below a threshold, we zero out this area.  

4. Finally, we use the remaining positive regions of 
the saliency map as locations to mask the 
adversarial image 

 

 
Fig 7: First find the saliency map of the image. The 

following two steps construct a mask that is applied to the 
adversarial image, blocking the adversarial perturbation. 

 
3.2 DOA Defense 

They demonstrated that traditional adversarially robust 
model training approaches on digital images, such as 
Robust Adversarial Training with PGD and Randomized 
Smoothing, perform poorly against physical attacks. 
 
The traditional attack concept is far too incompatible with 
realistic physical attacks. The insertion of hostile 
occlusions to a portion of the input is a fundamental 
common factor in many physical attacks. The amount of 
the adversarial occlusion, but not its shape or position, is a 
frequent restriction of such attacks [12]. 
 
White-box scenario is considered. 
 
 
 
 
 
 
 
 
 
 

Fig 8: Demonstration of ROA defense. 
 
They propose the following simple abstract model of 
adversarial occlusions of input images. The attacker 
introduces a fixed-dimension rectangle. This rectangle can 
be placed by the adversary anywhere in the image, and the 
attacker can furthermore introduce l∞ noise inside the 
rectangle with an exogenously specified high bound  (for 
example,  = 255, which effectively allows addition of 
arbitrary adversarial noise). This model bears some 
similarity to l0 attacks, but the rectangle imposes a 
contiguity constraint, which reflects common physical 
limitations. The model is clearly abstract: in practice, for 
example, adversarial occlusions need not be rectangular or 
have fixed dimensions (for example, the eyeglass frame 

attack is clearly not rectangular), but at the same time 
cannot usually be arbitrarily superimposed on an image, 
as they are implemented in the physical environment. 
Nevertheless, the model reflects some of the most 
important aspects common to many physical attacks, such 
as stickers placed on an adversarially chosen portion of 
the object we wish to identify. They call this attack model a 
rectangular occlusion attack (ROA). An important feature 
of this attack is that it is untargeted: since the ultimate 
goal is to defend against physical attacks whatever their 
target, considering untargeted attacks obviates the need to 
have precise knowledge about the attacker’s goals. 

 
3.3 Certified Defense (IBP) 

Interval-Bound Propagation is the first certified defense 
against patch attacks [10]. It’s based on the fact that if we 
specify the patch location, one can represent the feasible 
set of images with a simple interval bound:  

● For pixels within the patch, the upper and lower 
bound is equal to 1 and 0 

● For pixels outside of the patch, the upper and 
lower bounds are both equal to the original pixel 
value 

We can then use constraints to  apply IBP for training a 
provably robust model, i.e., a model that has a certified 
lower-bound accuracy. 
 

 
Fig 9: Demonstration of IBP Defense. 

 
By extending interval bound propagation (IBP) 
protections, they provide the first certifiable defence 
against patch attacks. They also recommend changes to 
IBP training in the patch configuration to make it more 
efficient. They further investigate the generalisation of 
certified patch defences to patches of various shapes, 
finding that robustness is consistent across patch types. 
Preliminary results on verified defence against the 
tougher sparse attack model, in which a set number of 
potentially non-adjacent pixels can be freely manipulated, 
are also shown. 
 
The caveats of this certified approach are that the IBP 
defense has relatively poor clean and provable robust 
accuracy. The IBP-based method is not likely to effectively 
scale up to ImageNet. 
 

4. CONCLUSIONS 
 
Adversarial attacks pose a huge threat to security, safety 
and trust in our ML models. Physically realizable attacks 
are dangerous and haven’t been explored as much as 
digital adversarial attacks, which greatly impedes progress 
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to building robust deep learning models. There exist 
physical attacks that can dodge face recognition systems, 
fool road sign classifiers, and generate universal 
adversarial stickers/patches to cause misclassification in 
any scene. Some recent works introduce defenses to deal 
with these attacks on small-scale datasets. Further work is 
needed to evaluate progress on larger-scale datasets. 
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