

EVALUATION OF COP OF A VAPOUR COMPRESSION REFRIGERATION SYSTEM WITH VARYING LENGTH OF AIR COOLED CONDENSER

M D JAVEED¹, Dr. T. Sivakumar²

 ¹ PG Scholar, Department of Mechanical Engineering, Malla Reddy College of Engineering & Technology, Maisammaguda (v), Dhulapally, Kompally, Medchal (D), Telangana, India – Pin 500100.
² Professor, Department of Mechanical Engineering, Malla Reddy College of Engineering & Technology, Maisammaguda (v), Dhulapally, Kompally, Medchal (D), Telangana, India – Pin 500100.

ABSTRACT: Vapour-compression refrigeration is a significant refrigeration technology that is extensively used for air conditioning and refrigeration in buildings. Refrigerators used in large-scale warehouses for chilled or frozen storage of foods and meats, refrigerated trucks and railroad cars, and a host of other commercial and industrial services are among the many types of industrial plants that use large vapour-compression refrigeration systems. Natural gas processing plants are among the many types of industrial plants that use large vapour compression refrigeration systems. A circulating liquid refrigerant is used as the medium for vapour-compression, which absorbs and eliminates heat from the area to be cooled. The condenser is a device that cools a material to make it condense from a gas to a liquid form. It provides latent heat to the material by utilizing the condenser coolant. There are a variety of heat exchangers available, each with its own design and size. This paper provides an experimental and numerical analysis of two alternative options for improving COP in vapour compression systems, and we aim to design an evaporative condenser using the CREO-2 Software, which will assist the refrigerant cool at a quicker pace and improve the COP of the VCRS.

1. INTRODUCTION

1.1 Vapour Compression Refrigeration System Experimental Procedure:

The evaporator and condenser in a vapour compression refrigeration system are fabricated as shell and tube type adiabatic (insulated shell) heat exchangers, with the refrigerant fluid flowing through tubes and the external fluid remaining in the shell of both the evaporator and condenser. The refrigerant HFC-134a flows through copper tubes with outside and inside diameters of 9.5 mm and 8.5 mm. Water from the supply may flow through the shells of both the evaporator and the condenser, and there is a system in place for controlling and measuring the water flow rate.

During each trial, however, the evaporator shell's input and exit valves are closed, and a set quantity of brine is placed in the shell, which is cooled from ambient temperature to ultimate refrigeration temperature. An agitator is also installed in the evaporator shell to stir the brine and maintain temperature consistency throughout the shell. RTDs (Pt 100 at 0°C) firmly insulated throughout the length of tubes by polyurethane cellular foam are used to detect temperature at different locations. (Axial heat conduction was thus ignored.) In the meanwhile, the temperature of cooling water flowing at the entrance and exit of the condenser shell, as well as the temperature of a fixed quantity of brine filled in the evaporator shell, is recorded in the same manner. Pressure gauges indicate the refrigerant pressure.

2. LITERATURE REVIEW

Vapour compression refrigeration systems are now widely used in all refrigeration systems. It is a more advanced kind of air refrigeration cycle that employs a suitable working material known as refrigerant. Refrigeration is achieved in a vapour compression refrigeration system when the refrigerant evaporates at low temperatures. Ammonia (NH_3) , carbon dioxide (CO_2) and sulphurdioxide (SO_2) are the most common refrigerants used for this purpose. The mechanical energy needed to operate the compressor serves as the system's input. As a result, mechanical refrigeration systems are also known as mechanical refrigeration systems. The refrigerant utilized in the system is cycled throughout the system, condensing and evaporating alternately. The Evans-Perkins cycle, often known as the reverse Rankin cycle, provides the basis for the real vapour compression cycle. The refrigerant receives its latent heat from the solution used for circulating it around the cold chamber and condensing when it evaporates. It is critical to determine the top limit of performance of vapour compression cycles before discussing and analyzing the actual cycle. Due to a finite

rate of heat exchange against a finite value of temperature difference and heat capacity, external irreversibility develops over the heat exchangers (condenser and evaporator). A fully reversible cycle sets this limit. The greater the temperature differential between the external fluid and the refrigerant as it passes through the evaporator and condenser, the better the heat transfer in the evaporator and condenser, as well as the cooling system. Using finite time thermodynamics, a vapour compression refrigeration system may be theoretically optimized and balanced under steady-state circumstances for design parameters such as evaporator and condenser pressure depending on the provided refrigeration. Domestic refrigerators, water coolers, cooling cabinets, cold storage, and food storage lockers are examples of applications. Because of the temperature differential between the refrigerant and the external fluid across the evaporator tubes as a function of time, heat transfer across the evaporator tubes should be minimized, lowering the system's performance. In this way, a condition may arise prior to the completion of the cooling job, i.e. the attainment of the required refrigeration temperature, when the temperature difference between the refrigerant and the external fluid over the evaporator is insufficient to maintain a reasonable amount of heat transfer and evaporation rate. The evaporator and condenser pressures are determined by the length of the capillary tube, and the length of the capillary tube may theoretically be optimized if the heat transfer conditions over the evaporator and condenser are steady state.

The evaporator pressure rises as the length decreases, and vice versa. We investigate the experimental values of refrigeration rate, power consumption, condenser duty, COP, and overall heat transfer coefficient in the condenser and evaporator, as well as their variation over time, and the role of capillary tube length, while the system is operating under real-world transient conditions. This research aids in the design and balancing of components of a "vapour compression refrigeration system" in order to improve its performance in real-world situations.

The research of the expansion device in a basic vapour compression refrigeration system by Sunil M. Telling et al. (2019) is required in order to understand the factors that may improve the overall performance of the system. The experiment was carried out on capillary tubes of various lengths (3 feet, 3.5 feet, and 4 feet), with each test segment being examined in three different configurations: helical coiled, straight coiled, and serpentine coiled. Each test section's diameter was maintained constant at 0.036 inch. The impact of the configuration and capillary tube length

on the system's overall performance was investigated. The mass flow rate is highest for the straight design and lowest for the helical coiled form, according to the results of the experimental research. The helical coiled design had the greatest cooling impact, whereas the straight coiled shape had the least. As the system's load was raised, the compressor's work was found to decrease.

3. INPUT DATA OF COP OF A VAPOUR COMPRESSION REFRIGERATION SYSTEM WITH CHANGE IN LENGTH OF CONDENSER

		FLUID			
Hot fluid		Cold fluid			
Refrigerant- R134a		Air			
Inlet	Pressur	е	Inlet	Pı	essure outlet
mass	outlet		mass		
flow			flow		
0.05	2 bar		0.1	Er	ivironmental
kg/sec			kg/sec	pr	ressure
CONDENSER					
L		ong length	l	Short length	
Length		1600mm		1200mm	
Tube length			8000mm		7500mm
Diameter		20mm			20mm
Thickness		2mm			2mm

Evaporative Condenser Design Using CREO:

We are manually evaluating the values of an evaporative condenser based on the air and refrigeration data. For the condensation of ammonia vapours, an evaporative condenser is considered.

Cooling there are many kinds of condensers used in refrigerators, so we must choose one and install it.

The tube's length L = 4000mm W=2000mm width of the bundle di=18.5mm inner diameter do=19.5mm outside diameter R134a was utilized as the refrigerant.

Temperature at the inlet:	

			Density	Specific		
Temperat			of	volume	Heat	content
ure	pressu	ire	liquid	of	enthal	ру
				vapour		
Fahrenhei	Psia	Psig	(lb./cu.	(cu.ft./l	Liqui	Vapo
t			ft.)	b.)	d	ur
100	138.	123.	71.70	0.340	44.3	114.7
	28	58			93	82
125	198.	183.	67.68	0.232	53.3	117.6
	27	57			85	60
150	276.	261.	63.13	0.159	62.9	119.8
	12	42			89	79

4. MODELS OF EVAPORATIVE CONDENSER:

Fig: 4.1 2D Modeling of Evaporative condnser

Fig 4.2 Extrusion of 2D Model of Evaporative condnser

Fig: 4.4 Drawing Condenser tube axis

International Research Journal of Engineering and Technology (IRJET)e-ISSN: 2Volume: 08 Issue: 08 | Aug 2021www.irjet.netp-ISSN: 2

Fig 4.6 Inserting of Condenser tube

5. RESULTS AND DISCUSSION

5.1 Analysis of the Short Length Condenser by ANSYS:

While doing analysis the temperature changes take place fig shown below

Fig 5.1 Temperature analysis using 67 Iteration

Fig 5.2 Temperature analysis using 70 Iteration

Temperature at short length condenser:

Pressure:

Fig 5.4 Pressure analysis of short length condenser

Density:

© 2021, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1414

Temperature Graph for short Length Condenser:

Table 5.1 Temperature Graph results

Length (mm)	Temperature (°C)
0.001	57.34595867
390.6043817	58.9086427
781.2077633	60.13520461
1171.811145	61.79762283
1562.414527	63.64386931
1953.017908	65.4573121
2343.62129	67.19949855
2734.224672	68.79916396
3124.828053	70.96431469
3515.431435	73.25033865
3906.034817	75.53290247
4296.638198	78.06286903
4687.24158	80.35103216
5077.844961	82.89024114
5468.448343	85.66985017
5859.051725	88.47499281
6249.655106	91.34149361
6640.258488	94.33034695
7030.86187	96.95371421
7421.465251	99.86033957

Fig 5.8 Pressure Graph for Short Length Condenser

Table 5.2 Pressure Graph Results

Length (mm)	Pressure (Pa)
8.692103042	250117.7146
398.4265779	250142.6772
788.1610528	250236.1804
1177.895528	248692.9246
1567.630003	248733.7135
1957.364477	247825.4632
2347.098952	247114.7909
2736.833427	247186.4945
3126.567902	245622.2098
3516.302377	245662.8824
3906.036852	244021.2674
4295.771327	244062.561
4685.505802	242499.0487
5075.240277	242458.0113
5464.974751	241841.1102
5854.709226	240937.3641
6244.443701	240987.8554
6634.178176	239326.0194
7023.912651	239419.9705
7413.647126	239621.711

Density Graph for Short Length Condenser:

Fig 5.9 Density Graph for Short Length Condenser

Table 5.3 Density Graph Results

Length (mm)	Density (Fluid)		
	(kg/m^3)		
8.692103042	1203.53511		
398.4265779	1203.53511		
788.1610528	1203.53511		
1177.895528	1203.53511		
1567.630003	1203.53511		
1957.364477	1203.53511		
2347.098952	1203.53511		
2736.833427	1203.53511		
3126.567902	1203.53511		
3516.302377	1203.53511		
3906.036852	1203.53511		
4295.771327	1203.53511		
4685.505802	1203.53511		
5075.240277	1203.53511		
5464.974751	1203.53511		
5854.709226	1203.53511		
6244.443701	1203.53511		
6634.178176	1203.53511		
7023.912651	1203.53511		
7413.647126	1203.53511		

Velocity Graph of Short Length Condenser:

Fig 5.10 Velocity Graph for Short Length Condenser

Table 5.4 Velocity Graph Results

Length (mm)	Velocity (m/s)
8.692103042	0.334753654
398.4265779	0.518724717
788.1610528	0.519513216
1177.895528	0.389616189
1567.630003	0.395310989
1957.364477	0.364666339
2347.098952	0.488594717
2736.833427	0.347264241
3126.567902	0.378946198
3516.302377	0.384940163
3906.036852	0.37836263
4295.771327	0.374370263
4685.505802	0.361783484
5075.240277	0.489863951
5464.974751	0.365477312
5854.709226	0.39940467
6244.443701	0.39453166
6634.178176	0.517075322
7023.912651	0.515501528
7413.647126	0.322941516

5.2 Temperature Analysis of Long Length Condenser by ANSYS:

While doing analysis the temperature changes take place fig shown below

Temperature:

Fig 5.12 Temperature analysis for Long length condenser

Fig 5.13 Pressure analysis for Long length condenser

Density:

Pressure:

Fig 5.14 Density analysis for Long length condenser

Velocity:

Temperature Graph for Long Length Condenser:

Fig 5.16 Temperature Graph for Long Length Condenser

Table 5.5 Temperature Graph Results

Length (mm)	Temperature (°C)
4.44089E-13	53.96297663
332.8319183	55.04635496
665.6638366	56.42301546
998.4957548	57.77625852
1331.327673	58.74881243
1664.159591	60.30561664
1996.99151	61.96937617
2329.823428	63.36647377
2662.655346	64.87834195
2995.487264	66.31103175
3328.319183	67.99908447
3661.151101	70.0311358
3993.983019	71.95977769
4326.814938	74.01379432
4659.646856	75.97257098
4992.478774	77.9396234
5325.310692	79.97323471
5658.142611	82.0801168
5990.974529	84.83358548
6323.806447	87.05272486
6656.638366	89.415464
6989.470284	92.27550838
7322.302202	94.76427911

Page 1417

International Research Journal of Engineering and Technology (IRJET) e-IS

T Volume: 08 Issue: 08 | Aug 2021

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

7655.13412	97.08584892
7987.966039	99.26701338

Pressure Graph for Long Length Condenser:

Fig 5.17 Pressure Graph for Long Length Condenser

Table 5.6 Pressure Graph Results

Length (mm)	Pressure (Pa)
11.38987423	250156.9528
343.272678	250189.9247
675.1554817	250230.7424
1007.038285	250099.7308
1338.921089	247997.8853
1670.803893	248041.0425
2002.686697	247656.2409
2334.569501	245795.7638
2666.452304	245842.078
2998.335108	245120.5105
3330.217912	243605.355
3662.100716	243656.9943
3993.983519	242559.774
4325.866323	241441.4119
4657.749127	241492.2049
4989.631931	240029.6899
5321.514734	239268.6451
5653.397538	239314.1811
5653.397538	239314.1811

5985.280342	237539.6761
6317.163146	237092.3429
6649.045949	237134.5521
6980.928753	235074.6731
7312.811557	234902.042
7644.694361	234942.6583
7976.577164	235015.8219

Density Graph of Long Length Condenser:

Fig 5.18 Density Graph for Long Length Condenser

Table 5.7 Density Graph Results

Length (mm)	Density (Fluid) (kg/m^3)
11 20097422	1202 52511
11.30907423	1205.55511
429.87936	1203.53511
848.3688458	1203.53511
1266.858332	1203.53511
1685.347817	1203.53511
2103.837303	1203.53511
2522.326789	1203.53511
2940.816275	1203.53511
3359.305761	1203.53511

L

International Research Journal of Engineering and Technology (IRJET)e-ISSNVolume: 08 Issue: 08 | Aug 2021www.irjet.netp-ISSN

e-ISSN: 2395-0056 p-ISSN: 2395-0072

3777.795247	1203.53511
4196 284732	1203 53511
4190.204732	1203.33311
4614.774218	1203.53511
5033.263704	1203.53511
5451.75319	1203.53511
5870.242676	1203.53511
6288.732161	1203.53511
6707.221647	1203.53511
7125.711133	1203.53511
7544.200619	1203.53511
7962.690105	1203.53511

Velocity Graph of Long Length Condenser:

Fig 5.19 Velocity	Graph of Long	Length Condenser
-------------------	---------------	------------------

Table 5.8 Velocity Graph Results

Length (mm)	Velocity (m/s)
11.38987423	0.355408375
343.272678	0.394491589

675.1554817	0.396598205	
1007.038285	0.283652915	
1338.921089	0.403446063	
1670.803893	0.405279831	
2002.686697	0.315617614	
2334.569501	0.415578148	
2666.452304	0.41666662	
2998.335108	0.364711394	
3330.217912	0.434562871	
3662.100716	0.435770266	
3993.983519	0.403058562	
4325.866323	0.431726593	
4657.749127	0.430704056	
4989.631931	0.359387818	
5321.514734	0.413705043	
5653.397538	0.413186805	
5985.280342	0.320848026	
6317.163146	0.401691263	
6649.045949	0.401177727	
6980.928753	0.33651849	
7312.811557	0.393514809	
7644.694361	0.393879206	
7976.577164	0.324153889	

5.3 Summary of Results and Discussion:

Table 5.1 Results for Short Length Condenser

Short Length Condenser		
Change in Temperature (°C)	42.66	
Change in Specific Enthalpy (KJ/kg)	124.7	
Heat Rejection from Condenser (KJ/sec)	6.0185	
Refrigeration Effect (KJ/sec)	3.9	

International Research Journal of Engineering and Technology (IRJET)

Volume: 08 Issue: 08 | Aug 2021

www.irjet.net

СОР	1.92

Table 5.2 Results for Long Length Condenser

Long Length Condenser		
Change in Temperature (°C)	46	
Change in Specific Enthalpy (KJ/kg)	129.37	
Heat Rejection from Condenser (KJ/sec)	6.46	
Refrigeration Effect (KJ/sec)	4.4	
СОР	2.13	

Table 5.3 Comparison of Short and Long Length Condensers

Condens	ser	Length	СОР
		(mm)	
Short Condenser	Length	7500	1.92
Long Condenser	Length	8000	2.13

Reduction in Temperature at Exit of Condenser tube:

As the Length of Condenser increases Surface area of Condenser increases, as a result we obtain Reduction in Temperature at Exit of Condenser tube.

Reduction in Enthalpy at Exit of Condenser tube:

We know that Enthalpy is function of Temperature,

h = f(T)

So, As the Length of Condenser increases there is an Reduction in Enthalpy at Exit of Condenser tube.

Heat Rejection from Condenser tube:

 $Q_c \alpha \triangle T$

$Q_c \alpha \bigtriangleup h$

So, As the Length of Condenser increases there is an increase in Heat Rejection from Condenser tube taking place.

COP of Evaporative Condenser:

By varying the length of air cooled condenser in vapour compression refrigeration System COP increased from 1.92 to 2.13.

6. CONCLUSIONS:

This research looks at how the length of the condenser and capillary tubes, as well as the refrigerant charge, affect the performance of a basic vapour compression refrigeration system.

It was discovered that as soon as the compressor is turned on, the charge is quickly transferred from the evaporator to the condenser through the compressor, followed by a relatively sluggish refilling of the evaporator via the capillary tube.

The decrease in system performance from the homogeneous (best case scenario) to the liquid pooling (worst case scenario) distribution varied from 0% to 3% in terms of COP, according to the findings.

The negative impact of mal-distribution on COP is further increased by lower values of condenser sub cooling and higher capacity, according to the findings.

Despite the fact that liquid pooling distribution is arguably the worst scenario in terms of condenser mal-distribution, its effect on COP was minor when compared to evaporator mal-distribution.

The COP degradation was shown to be significantly lower in milder situations, such as the linear refrigerant distribution, at about 1%. The COP of a vapour compression refrigeration System was improved from 1.92 to 2.13 by changing the length of the air cooled condenser.

REFERENCES:

- Eugene Avallone (editor), Theodore Baumeister 1 III (editor), McGraw-Hill, New York, NY, 1987
- Brownell, 2. K.A. M.S. Thesis, Mechanical Engineering, Solar Energy Laboratory, University of Wisconsin- Madison, 1998, "Investigation of the Field Performance for Industrial Refrigeration Systems.""Flow of Fluids via Valves, Fittings, and Pipe," Crane Co. Joliet, IL: Technical Paper No. 410, 1988.
- 3. Fisher, M., Vilter Manufacturing Company, Milwaukee, WI, 1998

- 4. Klein, S.A., and Alvarado, F.L., "EES-Engineering Equation Solver," Middleton, WI: F-Chart Software, 1999.
- 5. J. Kollasch, Engineer, EVAPCO Inc., Westminster, MD, 1999
- 6. K. A. Manske, "Performance Optimization of Industrial Refrigeration Systems, M.S. Thesis, Mechanical Engineering," University of Wisconsin-Madison, Solar Energy Laboratory, 2000.
- 7. Manske, K.A., Reindl, D.T., and Klein, S.A., "Load Sharing Strategies In Multiple Compressor Refrigeration Systems," Purdue University, West Lafayette, IN, 2000

- 8. Nicoulin et al., Computer Modeling Of Commercial Refrigerated Warehouses Proceedings ACEEE, Washington D.C., pp. 15-27, 1997.
- 9. Mitchell, John W. and Braun, James E., Design, Analysis, and Control of Space Conditioning Equipment and Systems, University of Wisconsin-Madison, 1998.
- 10. J.K. Dabas, A.K. Dodeja, Sudhir Kumar, and K.S. Kasana, "Performance characteristics of "vapour compression refrigeration system" under actual transient circumstances," International Journal of Advancements in Technology, 20