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Abstract - Medical image processing using machine 

learning is an emerging field of study which involves 
making use of medical image data and drawing valuable 
inferences out of them. Segmentation of any body of 
interest from a medical image can be done automatically 
using machine learning algorithms. Deep learning has 
been proven effective in the segmentation of any entity of 
interest from its surroundings such as brain tumors, 
lesions, cysts, etc which helps doctors diagnose several 
diseases. In several medical image segmentation tasks, the 
U-Net model achieved impressive performance. In this 
study, first, we discuss how a Dilated Inception U-Net 
model is employed to effectively generate feature sets over 
a broad region on the input in order to segment the 
compactly packed and clustered nuclei in the Molecular 
Nuclei Segmentation dataset that contains H&E 
histopathology pictures, including a comprehensive review 
of related work on the MoNuSeg dataset.  
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1. INTRODUCTION 

The methods of prognosis and prediction of cancer 
in patients have been improving and being researched 
consistently over the past years. Predicting cancer 
susceptibility, predicting cancer resurgence, and 
forecasting cancer survivability are the three areas of 
interest while predicting cancer [1].  It is vital to segment 
critical organs, tissues, or lesions from medical images 
and to extract features from segmented objects to assist 
physicians in making the correct diagnosis. Cancer 
detection in patients is made easier using machine 
learning algorithms such as Artificial Neural Networks, 
Decision Trees, Support Vector Machines, and other 
classification algorithms that learn features and patterns 
from the past patient data provided to them and make 
predictions on the unseen data using the learned 
features and patterns from the past true data. 

Segmentation of an object from a medical image has 
been an intricate task in medical image analysis which 
can be realized using machine learning models [2] 
instead of manual annotation by hand. This is usually 
accomplished by feeding a 2-dimensional or 3-
dimensional image to a machine learning algorithm and 
acquiring a pixel-wise classification of the image as a 
prediction. Deep learning, an emerging field of machine 
learning, turns the original feature representation space 
into another space by layering feature transformations, 
making tasks like recognition, classification, and 
segmentation easier which is achieved by using 
convolutional neural networks that look for valuable 
patterns in the image. This method of learning samples 
using big amounts of medical data can better 
characterize the rich information inherent in the data 
than typical artificial methods for constructing features. 

Nuclei segmentation in histology images helps 
doctors diagnose cancer in patients. The nuclei's contour 
and size are the most significant features that need to be 
predicted in a medical image for an appropriate 
diagnosis. Therefore, modifications to the original DIU-
Net model are proposed to segment the nuclei in the 
MoNuSeg data [3]. A Dilated Inception U-Net model was 
used which uses dilated convolutions that are capable of 
efficiently generating feature sets of a large area on the 
input. The model proposed was much more 
computationally efficient and focused on capturing more 
details in the data as compared to other reviewed 
models in the same sphere. This was done by 
introducing dilated inception blocks instead of the 
traditionally used convolutional layers to overcome the 
shortcomings of classic U-Net on the MoNuSeg dataset. 
These dilations enabled the model to learn features from 
a larger spatial domain without being very 
computationally expensive. The dataset used for testing 
the proposed model was introduced by Neeraj Kumar et 
al 2017 as a part of the Multi-Organ Nuclei Segmentation 
(MoNuSeg) Challenge [4]. The data includes images of 
manually annotated, magnified nuclei that are 
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hematoxylin and eosin (H&E) stained, which are the 
bodies of interest that need to be segmented. 

2. LITERATURE REVIEW 

  Advances in Deep neural networks in medical 
imaging have been used extensively for localization and 
classification of nuclei in histopathology data from 
breast and colon cancer, however, such traditional 
methods did not work for segmentation Thus this 
introduced the use of Deep CNN architectures for 
semantic segmentation due to its automatic feature 
extraction and end-t-end training methods Then came 
Fully Convolutional Networks that could be applied 
regardless of input image sizes and produce more 
accurate segmentation results by utilizing features from 
different scales [5]. Traditional segmentation strategies 
like the SegNet [6] and the classic U-Net model [7] keep 
encoding the image to a bottleneck layer to extract more 
influential features from the image and using skip 
connections to retain the spatial features to segment the 
object of interest from the surrounding, have shown 
good results but have struggled to delineate nucleus 
borders adequately. Specifically designed models have 
been introduced recently to segment overlapped and 
clustered nuclei from this dataset.  

  Z Zeng et al 2018 introduced a RIC U-Net model 
which comprises deep residual inception modules and 
residual modules along with convolutional layers as the 
skip connections of the U-Net model and segmented the 
clustered/overlapped nuclei from the same histology 
images in the MoNuSeg dataset [8]. They used an 
attention mechanism in the decoder blocks to select the 
most influential features. However, the network was too 
deep and the number of images proved to be insufficient 
which led the model to overfit. Zhou et al 2020 used a 
multi-Head [9]. Fully Convolutional Network model with 
a ResNet with fifty convolutional layers as the backbone 
for the top-down encoder and a binary cross-entropy 
loss function to segment the nuclei in this dataset. They 
also normalized the color of the tissue images and 
dilated the binary masks once before using them as the 
training data. The patch sizes used by them were 256 x 
256.  

  Tahir Mahmood et al 2021 proposed a nuclear 
segmentation method based on a residual skip 
connection It did not require post processing unique 
traditional nuclei segmentation strategies They 
emphasized on utilizing residual connectivity to 
maintain the information transfer from the encoder to 
the decoder They used the stain normalization technique 
as proposed by Macenko [10]. They proposed an R-SNN, 
an end-to-end encoder–decoder segmentation network 

in which the input image is first downsampled by 
passing it through multiple deep-learning convolution 
and pooling layers in the encoder and then upsampled to 
the original size by the decoder part. They used cross-
entropy loss because of its logarithmic function and 
probabilistic approach. They utilized stain normalization 
to reduce the number of convolution layers and thus the 
proposed method had fewer trainable parameters, the 
model converged rapidly and trained fast. Kiran I et al 
2022 segmented these clustered nuclei by adopting pre-
processing techniques [11] like color normalization, 
patch extraction, data augmentation, distance mapping, 
and binary thresholding by introducing a DenseRes U-
Net model which replaced the skip connection in U-Net 
with atrous blocks (or dilated convolutions) to ensure 
there is no dimension mismatching between the encoder 
blocks and decoder blocks. The authors performed 
distance mapping to find the nuclei's center point and to 
distinguish between the inner boundary and core area of 
the nuclei. Binary thresholding was applied to the 
distance maps before feeding them to the DenseRes U-
Net model. Yunzhi Wang cascaded two U-Nets together 
to construct a model and applied color normalization on 
the nuclei images using the mean and standard deviation 
from the ImageNet dataset [12]. The author used 
512x512 patches for training, and patches of this size 
make the model train relatively more slowly. Kong Y et al 
2020 Two-Stage Stacked U-Nets with an attention 
mechanism that uses U-Net as the backbone architecture 
and input images on four different zoomed scales and an 
attention generation model which is used to weigh the 
outputs of these four differently scaled sets of 
inputs[13]. They predicted the masks in the two stages, 
but also fed the input along with the predicted masks 
from the first stage to the second stage, attaining the 
final prediction. 

  Excessive data augmentation and pre-processing 
measures on the dataset have certainly helped deep 
learning models generalize well on unseen data. Color 
normalization has been a common strategy to overcome 
the influence of stain variations in the dataset on the 
models. These methods avoid the potential model 
overfitting to the training data. The model making use of 
dilated convolutions has substantially less trainable 
parameters as compared to the models that extract 
feature sets of the same scale. 

3. METHODOLOGY 

D Cahall et al 2017 introduced Dilated Inception U-
Net for brain tumor segmentation on the BRATS 2018 
dataset and achieved impressive results [14, 15]. 
However, the MoNuSeg dataset was comparatively more 
complex and contained clustered nuclei. To better fit this 
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data, a few changes were made to the Dilated Inception 
U-Net model to use for the segmentation of nuclei. The 
challenge was not only to segment the nuclei but to 
eliminate the overlapping nuclei in the predicted masks. 

3.1 Proposed Method 

  The DIU-Net model for nuclei segmentation was 
implemented on the training data along with augmented 
data to segment the nuclei on the unseen testing data. 
The dilated Inception U-Net model is able to extract a 
diverse set of features that include more spatial 
information from the tissue images. The preparation of 
training the data commenced with the extraction of 
patches from the high-resolution histology images 
followed by the application of a few data augmentation 
techniques to compensate for the insufficient training 
data available. 

3.2 Dataset 

  The dataset consists of 30 Hematoxylin and Eosin 
(H&E) stained tissue images with more than 21000 
nuclear boundary annotations validated by a medical 
doctor. The dataset was introduced by (Neeraj Kumar et. 
al. 2017) who generated this dataset from The Cancer 
Genomic Atlas (TCGA) archive [16]. These 30 images 
contained H&E-stained images of 7 organs (Bladder, 
Brain, Breast, Colon, Kidney, Lung, and Prostate) which 
were used for training the model. The corresponding 
masks to these images were in the form of XML files, so 
they were first converted to binary masks before further 
operations. Additionally, 14 images were provided to 
evaluate the model's performance and were utilized to 
validate and evaluate the model. 

3.3 Data Preprocessing 

  In order to tackle this difficult dataset, a few pre-
processing techniques for the data were adopted, 
including patch extraction from raw images to reduce 
the load while training the model, and augmentation to 
deal with the shortage of data for training a 
Convolutional Neural Network model. The H & E stain 
variations across the organs pose threats to the quality 
of model training. To avoid this, a color normalization 
technique was adopted which involves the Singular 
Value Decomposition geodesic method for the 
acquisition of stain vectors of the images [10]. The color 
normalized images were then used for further 
preprocessing. To prepare the training data, patches of 
dimensions 256 x 256 were extracted from every 
training and testing image of dimensions 1000 x 1000 
with some overlapping (Fig 1). Each image would 
provide 16 patches with a small overlapping. The 
corresponding masks were also patched the same way 
before feeding to the model. The training patches and 
testing patches were kept separate throughout the 
training. To avoid potential overfitting of the model to 
the training data, multiple augmentation techniques 
were applied including random rotation, vertical flip, 
horizontal flip, gaussian blur, gaussian noise, color jitter, 
and channel shuffle. The open-source computer vision 
library OpenCV and TensorFlow were used to apply 
these augmentation techniques to the image patches [17, 
18]. Besides the 480 training images, there were 
approximately 2500 augmented images that were used 
along with the unaugmented data to train the model, 
keeping the patches from the 14 images from the testing 
data aside as validation data.   



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

           Volume: 09 Issue: 10 | Oct 2022               www.irjet.net                                                                         p-ISSN: 2395-0072 

 

© 2022, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 845 

 

 

Fig 1. The Tissue Images and their corresponding binary masks after patching. 

 

3.4 Model Architecture 

The classic U-Net model was modified by applying 
dilated inception blocks instead of the traditional 
convolution layer blocks. The primary goal is to perform 
classification on all the pixels of the patches of the tissue 
image and produce a binary mask that shows whether a 
pixel belongs to a nucleus or not. Every pixel in the 
binary mask has either two values 0 and 1 after binary 
thresholding on the output from the final sigmoid layer. 

  Dilated filters in addition to standard filters were 
employed to capture features from various spatial 
domains and create a feature set from these combined 
sets of features. The dilated filters capture just as much 
information as the standard filters capturing a larger 
area having the same number of parameters. There were 
significantly fewer trainable parameters in the model, 
which significantly reduced the load caused by the 
model's training. Inception modules have been effective 
in extracting significant features from images that help 
in image classification [19]. Due to their variable filter 
sizes in the inception layers, the network can learn 

various spatial patterns at different scales. Consequently, 
the number of trainable filters is increased substantially 
if the same number of filters are used. Dilated filters 
solve this shortcoming by detecting similar spatial 
patterns on the same scale with less trainable 
parameters. 

3.4.1 Dilated Convolutions 

The purpose of dilated convolutions is to gather 
information over large areas of the image. Dilation 
operates as if the filter is expanded and zeros are 
introduced in between the gaps and those zeros are 
phantoms i.e., not trainable. In other words, these 
dilations grow the region covered by a filter. Fig 2 shows 
how these dilations affect the filter’s region using an 
example. The underlying motivation behind using 
dilated filters is to capture information from a larger 
area without dealing with too many trainable 
parameters. 
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Fig 2.  A convolution filter with different dilation rates. 

 

3.4.2 Dilated Inception Blocks 

Input is followed by three parallel 1x1 filtered layers to 
ensure that the following three parallel differently 
dilated layers of 3x3 filters receive input with 
significantly fewer channels to reduce the load while 
training. The differently dilated filters use same zero-
padding which means there are a sufficient number of 
zeros introduced to the edges of the input to make sure 
the output has the same size as the input to concatenate 
the three outputs from the three differently dilated 
convolution layers. All the filters in these blocks are 
activated by a Rectified Linear Unit function (ReLU). The 
1x1 filters are used in order to reduce the dimensions of 
the input which would lower the number of trainable 

parameters. The outputs from the three differently 
dilated filters are concatenated together and followed by 
a batch normalization layer which produces the output 
from each of these blocks (Fig 3). The batch 
normalization layer is used to normalize the output of 
the preceding layers, making learning more effective. It 
can also be used as regularization to prevent the model 
from overfitting. The n above each convolutional layer in 
the block represents the number of filters in that layer 
and this number can be used to calculate the number of 
channels in the output of each block (i.e., 3n for a 
concatenation of three outputs of n channels each). 
These blocks are the basic units for the Dilated Inception 
U-Net model. 

https://docs.google.com/document/d/15kGDBkwdN8a1QBlr-XoabUAqsx2OdK5d/edit#bookmark=id.1fob9te
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Fig 3. Dilated Inception Block 
 

3.4.3 Dilated Inception U-Net 

The dilated inception blocks are put together to form 
the dilated inception U-Net model, which modifies the 
original U-Net model for segmentation. Fig 4 displays the 
model architecture constructed by the dilated inception 
blocks inside which can be seen in Fig 3. The shape of the 
outputs from each of the blocks has been written on 
them. These blocks are used to extract more spatial 
information on each encoding and decoding block as 
well as the two bottleneck blocks. The purpose of this 

model is to extract useful features from the input image 
while keeping the spatial information about the image 
intact. A sigmoid activation layer is used finally to 
classify whether a pixel belongs to a nucleus in the tissue 
image by mapping the output from the last block to 
values in the range 0 to 1. Closer values to 1 indicate the 
presence of a pixel belonging to a nucleus. All the values 
were set to 0 if they were smaller than 0.5 and set to 1 
otherwise in the predictions of the testing set before 
evaluating the metrics. 
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Fig 4. Dilated Inception U-Net model 
 

3.4.4 Encoder Block 

Each dilated inception block is followed by another 
dilated inception block until the bottleneck layer. A Max-
Pooling layer is applied to the output from each block 
before passing it to the next one to reduce the 
dimensions by half. Each four-pixel square on the image 
is replaced by Max-Pooling with one pixel whose value is 
equal to the maximum of the four pixels. The number of 
filters in each block is double that of the previous block. 
The model is then enabled to learn more low-level 
features. Moreover, a residual connection is added to the 
model to pass the output from each of these blocks to 
their corresponding decoder blocks in the U-Net 
symmetry for the retention of spatial information which 
the decoder blocks can further use to extract valuable 
features out of the image. The bottleneck layer which is 
capable of detecting rich but most spatially inaccurate 
features is where the encoding of the image to a lower 
scale cease. There are two bottleneck blocks, the first of 
which passes its output without changing the dimension 
to the second. These blocks are expected to learn a wide 
variety of low-level features, hence there are more filters 
in these blocks as compared to the other ones. 

3.4.5 Decoder Block 

The output from the decoder block contains useful 
information for the classification of pixels. The output’s 
shape must be expanded in order to align with the final 
output’s shape. The dimensions are enlarged using 
transposed convolutions that expand the output's size 
using trainable filters. In contrast to a max-pooling layer, 
this scales the output up to twice its original size and 

consists of trainable parameters. Before passing this 
scaled-up information to the next block, the outputs 
from the corresponding encoder blocks are concatenated 
to the output using the residual (or skip) connections 
mentioned before. The scaling-up is done until the size of 
the output acquired is the same as the input. A sigmoid 
activation layer, which is ideal for binary classification 
tasks is then applied to the output from the last decoding 
block to finally classify the pixel. 

3.5 Evaluation Metrics and Loss Function 

In the field of medical image analysis, merely an 
increase in accuracy cannot fully explain how well deep 
learning algorithms perform, where issues such as class 
disproportion in data and the catastrophic repercussions 
of skipped tests must be taken into account [15]. To 
evaluate the model, two metrics were used: DICE 
Coefficient and Aggregated Jaccard Index. DICE 
coefficient is defined as the ratio of twice the 
intersection between the ground truth and predicted 
mask to the sum of the ground truth and prediction 
masks (ref). In order to evaluate the DICE coefficient, the 
pixel values of the masks were scaled down in the range 
between 0 and 1. The product of the predicted mask and 
the ground truth would be equal to the area of 
intersection between the two. Summing the two image 
arrays would give the total area of both images. 

           
           

         

 

where G is the ground truth and P is the predicted mask 
of the nuclei. The numerator term represents their 
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intersection, whereas the denominator term is simply 
the sum of their areas. Aggregated Jaccard Index (AJI) is 
a metric to evaluate segmentation quality, defined as the 
ratio of the intersection of the ground truth and 
predicted mask to the sum of their union, false positives, 
and false negatives. 

          
       

             

 

where S is the set of all pixels in the predicted mask and 
ground truth that are mismatched those accounts for all 
the false positives and false negatives. This score is 
naturally lower than the Jaccard Index or IoU as more 
values are being added to the denominator. This metric 
evaluates the performance of a model by penalizing for 
the mis predicted pixels, under-segmentation, and over-
segmentation of nuclei.  A DICE Coefficient-based loss 
function defined as the negative natural logarithm of the 
DICE Coefficient was used for the model. 

                         

Higher values of the DICE Coefficient imply a better 
match of ground truth and predicted mask, so the lower 
values of the loss function indicate better segmentation 
quality. The range of the loss function is [0, ∞) where 0 is 
the absolute perfect case of ground truth and predicted 
mask matching with each other or them being exactly 
the same. 

4. RESULTS AND DISCUSSIONS 

  The model’s architecture was constructed from 
scratch and was trained on the 480 original patches of 
the color normalized images and approximately 2500 
augmented images using Adam Optimizer with a 
learning rate of 0.001 for 20 epochs with a batch size of 
10 images and the model with the best validation DICE 
Coefficient was chosen and used for evaluation on the 
testing set which was used as validation data in the first 
place. The entire training process took a little over an 
hour. The loss evaluated on the testing set was 0.2005. 
The overall segmentation quality was impressive 
considering the small training data used and the small 
training time. It was discovered that the model was 
relatively weaker at segmenting the nuclei belonging to 
the breast and colon images as is evident by the AJI 
scores on these organs. Table 1 shows the DICE 
Coefficient scores and AJI scores on different organs in 
the testing data.  

 

 

Table -1: Model Evaluation on the Testing Set Organs 

Organ DICE AJI 

Bladder 0.843 0.732 

Brain 0.817 0.696 

Breast 0.782 0.635 

Colon 0.775 0.630 

Kidney 0.824 0.700 

Lung 0.827 0.702 

Prostate 0.819 0.683 

 
Table -2: Training Results 

Results Score 

Loss 0.2005 

AJI 0.6877 

DICE 0.8183 

 
The DICE Coefficient score and Aggregated Jaccard 

Index were evaluated to be 0.8183 and 0.6877 on the 
entire testing set. The model was successful in effectively 
separating the boundaries of the nuclei, and the densely 
packed clusters of nuclei were separated pretty well. In a 
comparison of the predicted mask to the ground truth, a 
set of false-positive nuclei was discovered. The tissue 
images and their corresponding ground truth binary 
masks and predicted masks from the Dilated Inception 
U-Net model can be seen in Fig 6. This modified U-Net 
model used for nuclei segmentation was inspired by D 
Cahall’s [8] paper in which they used the same model for 
brain tumor segmentation. There were specific changes 
made to the model to fit better to the dataset being dealt 
with. In contrast to the convention in U-Net models, 
another bottleneck layer was introduced in sequence for 
the extraction of a set of even more complex features 
from input images. The same loss function was adapted 
but for binary classification. It is worth noting that the 
Dilated Inception U-Net is a computationally efficient 
model with a much faster training time which is made 
possible due to the dilated convolutions. The blocks 
utilizing inception modules (non-dilated convolutions) 
would have to train an absurd number of parameters, 
which would be more than twice as many as those in the 
dilated inception blocks if it weren't for the dilated 
convolutions. Besides the impressive scores on the 
testing data, there seemed to be a substantial number of 
false positives and false negatives in the predictions, 
which could be diminished using some post-processing 
techniques like image morphology or removal of 
extremely small predicted instances, leaving some 
ground for future research. 
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Fig 5. Tissue Images and their corresponding ground truth binary masks and predicted masks. 

The most popular patch sizes have been 256x256 
because they include more than enough contextual 
information from each nucleus' surroundings to extract 
meaningful features for segmenting them. Aside from the 
massive amount of memory needed, feeding patches of 
this size to the model assures a faster prediction and the 
model has to learn a lot fewer parameters than it would 
if the original images of size 1000x1000 were used for 
training. Color normalization of the dataset before 
further processing has been a common method in past 
works of researchers. Impressive results were 
nonetheless obtained with color normalization and 
excessive augmentation approaches which compensated 
for stain inconsistencies in the dataset. 

5. CONCLUSIONS 

The Dilated Inception U-Net model was used for 
nuclei segmentation in histopathology images. DICE 
coefficient and Aggregated Jaccard Index Score were 
used as evaluation metrics. Smaller image patches were 
extracted with minimum overlapping from each train 
and test image and multiple augmentation techniques 
were employed to improve the performance of the 
model. Despite the little amount of data provided, the 
model delivered the best performance segmenting brain 
and bladder nuclei images. Further work can be done to 
improve the performance of breast and colon nuclei 
segmentation by adopting different augmentation 
techniques. These sparse dilated filters were able to 
segment the densely packed nuclei in the tissue pictures, 
allowing the model to be generalizable to new unseen 
tissue images. The model showed promise in its 
generalizability by performing well on the unseen 
testing data despite being trained on a small dataset. 
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