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Abstract - Milling process plays a vital role in the 
machining processes. The efficiency of the milling process can 
be increased by different methods and by developing empirical 
relations between different parameters. Experimentally 
determined values can be optimized by using different 
techniques. The empirical models and investigate the optimal 
machinability parameters of milling process during machining 
EN 31 tool steel. In this consequence, milling experiments were 
conducted on vertical milling center based on central 
composite design with 27 experiments. The response surface 
methodology was adopted to develop the mathematical 
models for the responses and ANOVA is used to check the 
adequacy of the developed models and were found that the 
developed second order models can explain the variation in 
the temperature up to the extent of 98.06% and 99.07%. Then 
these experimentally measured values were carried to the 
optimization. GRA was successfully implemented to the 
measured experimental runs. Therefore, the present work 
enables the industries to perform the CNC milling operations 
on the hardened EN 31 material within the optimal levels of 

tool temperatures by maximizing the metal removal rate. 
 
Key Words:  EN 31 tool, ANOVA, CNC, Implementation of 
GRA, MRR and Tc. 
 

1.INTRODUCTION 
 
Many approaches have been proposed to minimize the heat 
generation and enhance tool life and metal removal rate in 
metal cutting. As the chip formation process in machining is 
accompanied by heat generation, which influences the 
mechanical and physical properties of both the work piece 
and the cutting tool. High temperatures tend to accelerate 
thermal softening of the tool and subsequent tool wear, 
which are not desirable because they negatively impact the 
accuracy of the machined surface and tool life. In the 
aerospace, automotive, mould/die and general 
manufacturing industries, there is great pressure to ensure 
lower cost, greater productivity and improved quality in 
order to encourage economic growth. Chatter is a self-

excited type of vibration that occurs in metal cutting if the 
chip width is too large with respect to the dynamic stiffness 
of the system, especially when machining with a high 
material removal rate. Among different types of milling 
processes, end milling is one of the most vital and common 
metal cutting operations used for machining parts because of 
its capability to remove materials at faster rate with a 
reasonably good surface quality. For these reasons, CNC end 
milling process has been recently proved to be very versatile 
and useful machining operation in most of the modern 
manufacturing industries. Only the implementation of 
automation in end milling process is not the last 
achievement. It is also necessary to improve the machining 
process and machining performances continuously for 
effective machining and also for the fulfillment of 
requirements of the industries. Surface roughness is a key 
factor in the machining process while considering machining 
performance and that is why in many cases, industries are 
looking for maintaining the good surface quality of the 
machined parts. It is also necessary to study the material 
removal rate along with surface roughness in CNC end 
milling process. In any metal cutting operation, a lot of heat 
is generated due to plastic deformation of work material, 
friction at the tool–chip interface and friction between the 
clearance face of the tool and work piece. So, it is generally 
considered that the heat produced during the machining 
process is critical in terms of work piece quality. Thus, 
effective control of heat generated in the cutting zone is 
essential to ensure good work piece surface quality in 
machining. All these factors prompt investigations on the use 
of biodegradable coolants and coolant free machining. But 
any attempt to minimize or avoid the coolant can be dealt 
with only by replacing the functions normally met by the 
coolants with some other means. If friction at the tool and 
work piece interaction can be minimized, by providing 
effective lubrication, the heat generated also can be reduced 
to some extent. Advancement in modern tribology has 
identified many solid lubricants, which can sustain and 
provide lubricity over a wide range of temperatures. 
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1.1 Hard Milling 

 
Hard milling is a machining process to cut the hardened 
materials of hardness range over 45 HRC with single point 
cutting tool. Now a day, hardened steels are being used in a 
variety of industrial applications like automotive parts such 
as studs, bearings, gears, cams, etc. However, it is to be noted 
that the turning of hardened steel with commonly used 
cutting inserts is influenced by more number of machining 
parameters and they adversely affects the performance of 
machining process. In order to minimize this, the 
conventional cutting inserts are getting replaced by 
specialized cutting inserts to cut the hardened materials 
lately. Some of these specialized inserts in existence are 
cubic boron nitride (CBN) inserts, polycrystalline cubic 
boron nitride (PCBN) and ceramic inserts. Some 
experimental investigations have been attempted to predict 
the performance of hard turning with the mentioned 
specialized cutting inserts. To reduce the milling related 
impact to the sub-surface area new process technological 
approaches for high-speed cutting have been developed in 
the last decades. According to, the wear of the milling tool 
spreads with the highest effective cutting speed, starting at 
the engagement point of the cutting edge, and can be 
reduced by an adequate increase of the feed per tooth. If the 
feed per tooth and the cutting speed in the hard milling 
process fall below a critical value, the tool vibrations 
increase and the tool wear grows significantly. In order to 
prove these chipping mechanisms, the complex interactions 
between the deformation rate, the elevated process 
temperature, the strength properties as well as the 
microscopic flow behavior and the structural integrity of the 
material in the local contact zone (sheer area) between the 
work piece and the milling tool have to be taken into detailed 
consideration. Increasing the cutting speed leads to 
increased friction in the sheer area which results in local 
elevated process temperatures. 

2. MOTIVATION AND OBJECTIVES OF THE PRESENT 
PROBLEM 

Cutting Temperature and MRR are the most important 
machining responses during end milling process. These out 
put parameters are influenced numerous process parameters 
during milling. Form the literature survey it is found that the 
parameters such as depth of cut ,feed rate and spindle speed 
are having considerable influence on cutting temperature and 
metal removal rate. The main objective of this investigation 
was to investigate the optimal machining conditions during 
hard milling with conventional cutting tools to achieve the 
maximum metal removal rate (maximum production rate) 
within the adequate machining cost. This work also develops 
the mathematical models for the cutting temperature and 
metal removal rate in terms of depth of cut, feed and spindle 
speed using response surface methodology. To study the 
influence of these process parameters, the experimental runs 

were conducted using Response Surface Method (RSM). RSM 
comprises a group of statistical techniques for empirical 
model building and model exploration. The response surface 
methodology is practical, economical and relatively easy for 
use. The experimental data were utilized to build 
mathematical model for first and second order model, by 
regression method. A response or output function is related 
to a number of input variables that affect it. The variables 
studied will depend on the specific field of application. The 
response surface method can substantially reduce the total 
number of experiments often carried out randomly and it is 
an adequate and reliable method to measure the true mean 
response of interest. Experiments were conducted on CNC 
milling machine to cut hardened tool steel with carbide 
cutting inserts. In order to reduce the number of 
experimental runs, experiments are planned based on design 
of experiments (DOE). Central composite design with 
27experimentswasselected.The corresponding cutting 
temperature and materiel removal rate for each experiment 
is calculated and recorded. Analysis of variance was adopted 
to check the adequacy of the experimentally measured values 
of the responses. Since, the optimization cannot be done to 
only one objective, when another objective is also important. 
Different solutions may produce conflicting scenarios 
between the two objectives. A solution, which is excellent 
with respect to one objective, requires a compromise in the 
other objective. This prohibits one to choose a solution, which 
is optimal with respect to only one objective, which makes 
the two objectives conflicting. The surface roughness and 
metal removal rate are inversely proportional. If metal 
removal rate is aimed to increase, the cutting temperatures 
will also increases and vice versa. Hence, the present problem 
is considered as a multi objective optimization problem. Gray 
Relational Analysis (GRA) as an effective and extensively used 
multi-objective optimization technique for the manufacturing 
problems. 

3. RESPONSE SURFACE METHODOLOGY 
 
Response surface methodology or RSM is a collection of 
mathematical and statistical techniques that are useful for 
the modeling and analysis of problems in which response of 
interest is influenced by several variables and the objective 
is to optimize this response. For example, suppose that a 
chemical engineer wishes to find the levels of temperature 
(x1) and pressure (x2) that maximizes the yield (y) of a 
process. The process yield is a function of the levels of 
temperature and pressure, say 
 
Y= f(x1, x2) +ε --------------------------------- (3.1) 
 
Where ε represents the noise or error observed in the 
process y. if we denote the expected response by E(y) = f(x1, 
x2) = η, then the surface is represented by, is called response 
surface. 
 
f(x1, x2) ---------------------------------- (3.2) 
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We usually represent the response surface graphically, such 
as in fig 4.1, where η is plotted versus the levels of x1, x2. To 
help visualize the shape of a response surface, we often plot 
the contours of the response surface as shown in fig 4.2. in 
the contour plot, lines of constant response are drawn in the 
x1, x2 plane. Each contour corresponds to a particular height 
of the response surface.  
 
In most RSM problems, the form of the relationship between 
the response and the independent variables is unknown. 
Thus, the first step in RSM is to find a suitable approximation 
for the true functional relationship between y and the set of 
independent variables is employed. If the response is well 
modeled by a linear function of the independent variables, 
then the approximating function is the first order model. 

 
Y= β0+β1x1+β2x2+---------------------+βkxk+ε -----------------
--- (3.3)  
If there is curvature in the system, then a polynomial of 
higher degree must be used, such as the second order model. 

Almost all RSM problems use one or both of these models, of 
course it is unlikely that a polynomial model will be a 
reasonable approximation of the true function relationship 
over the entire space of the independent variables, but for a 
relatively small reason, they usually work quite well. The 
method of least squares is used to estimate the parameters 
in the approximating polynomials. The RSM is then 
performed using the fitted surface. If the fitted surface is the 
adequate approximation, of the true response function, then 
analysis of the fitted surface will be approximately equal to 
analysis of the actual system. The model parameters can be 
estimated most effectively if proper experimental design is 
used to collect the data. Designs for fitting response surfaces 
are called response surface results. 
 

3.1 Experimental Designs For Fitting Response 
Surfaces 

Fitting and analyzing response surfaces are greatly 
facilitated by the proper choice of a experimental design. In 
this section, we discuss some aspects of selecting 
appropriate designs for fitting response surfaces.  

When selecting response surface design, some of the 
features of a desirable design are as follows;  

1. Provides a reasonable distribution of data points (and 
hence information) throughout region of interest.  
2. Allows model adequacy, including lack of fit, to be 
investigated.  
3. Allows experiments to be performed in blocks.  
4. Allows designs of higher order to be build up sequentially.  
5. Provides an internal estimate of error.  
6. Provides precise estimates of the model coefficients.  
7. Provides a good profile of the prediction variance through 
the experimental region.  

8. Provides reasonable robustness against outliers or 
missing values.  
9. Does not require a large number of runs.  
10. Does not require too many levels of the independent 
variables.  
11. Ensures simplicity of calculation of the model 
parameters.  
 
These features are sometimes conflicting, so judgment must 
often be applied in design selection. 
 

3.2 Designs for fitting first order model 

Suppose we wish to fit the first order model in k variables, 
there is a unique class of designs that minimize the variance 
of the regression coefficients (βi). These are the orthogonal 
first-order designs. A first-order design is orthogonal if the 
off-diagonal elements of the (X1X) matrix are all zero. This 
implies that the cross products of the columns of the X 
matrix sum to zero. The class of orthogonal first-order 
designs includes the 2k factorial and fractions of the 2k 
series in which main effects are not aliased with each other. 
In using these designs, we assume that the low and high 
levels of the k factors are coded to usual ±1 levels. The 2k 
designs do not afford an estimate of the experimental error 
unless some runs are replicated. A common method of 
including replication in the 2k designs is to augment the 
design with several observations at the center (the point 
xi=0, i=1, 2, 3, -----, k). The addition of center points to the 
designs does not influence the (βi) for i≥1, but the estimate 
of β0 becomes the grand average of all observations. 
Furthermore, the addition of center points does not alter the 
orthogonally property of the design. Central composite 
design is the most popular class of designs just for fitting 
second order models. Generally the CCD consists of a 2k 
factorial (or fractional factorial of resolution V) with nf runs, 
2k axial or star runs and nc center runs.The practical 
deployment of a CCD often arises through sequential 
experimentation. That is the 2k has been used to fit a first 
model, this model has exhibited lack of fit and the axial runs 
are then added to allow the quadratic terms to be 
incorporated in to the model. The CCD is a very efficient 
design for fitting the second order model. 

 
3.3 Design of Experiments 
 
An important aspect of RSM is the design of experiments 
(Box and Draper, 1987),usually abbreviated as DoE. These 
strategies were originally developed for the model fitting of 
physical experiments, but can also be applied to numerical 
experiments. The objective of DoE is the selection of the 
points where the response should be evaluated.  Most of the 
criteria for optimal design of experiments are associated 
with the mathematical model of the process. Generally, these 
mathematical models are polynomials with an unknown 
structure, so the corresponding experiments are designed 
only for every particular problem. The choice of the design of 
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experiment scan have a large influence on the accuracy of 
the approximation and the cost of constructing the response 
surface.  
 
In a traditional DoE, screening experiments are performed in 
the early stages of the process, when it is likely that many of 
the design variables initially considered have little or no 
effect on the response. The purpose is to identify the design 
variables that have large effects for further investigation. A 
particular combination of runs defines an experimental 
design. The possible settings of each independent variable in 
the n dimensional space are called levels. 

Figure-1: A 33full factorial design (27 points) 

 

Figure -2: Three one-third fractions of the 33 design 

If each of the variables is defined at only the lower and 
upper bounds (two levels), the experimental design is 
called 2nfull factorial. Similarly, if the midpoints are 
included, the design is called 3n full factorial and shown 
in Figure-1. 

 

 

Figure-3 Central composite design for 3 design variables at 
2 levels 

4. DATA PREPROCESSING 

Let the original reference sequence and comparability 
sequences be represented as Data preprocessing normally is 
required since the range and the unit in one data sequence 
can be different from those in another sequence. 
Correspondingly, data preprocessing is necessary when the 
sequence scatter range is too large, or the target sequence 
directions are different. Data preprocessing involves the 
transfer of the original sequence to a comparable sequence. 
Depending on the data sequence characteristics, some 
methods of data preprocessing are available for the grey 
relational analysis. If the target value of the original 
sequence is infinite, then it has a “the larger the better” 
characteristic. It means, the overall gray relational grade 
converts the multi-response (multi-gray relational grades) 
optimization problem into a single response (overall gray 
relational grade) optimization problem, with the objective 
function as maximization of overall grey relational grade. 
Hence, the overall grey relational grades rank the 
experimental runs as; the experimental run having higher 
grey relational grade refers as that corresponding 
combination of variables is closer to the optimal values. The 
optimal parametric combination is then evaluated by 
maximizing the overall grey relational grade. 

5. IMPLEMENTATION OF PROPOSED 
METHODOLOGY  
 

5.1 Experimental Details 
 
In this work, depth of cut, feed and cutting speed are 
considered as the control variables and MRR and cutting 
temperature as the output responses. In order to reduce the 
number of experimental runs, experiments were planned 
based on design of experiments (DoE). Central composite 
design with 27 experiments was selected. Table-1, lists the 
machining conditions and Table-2,  lists the feasible values of 
each process variable. Experiments are conducted on a 
precision CNC milling machine model BFW AGNI 45. 
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Hardened steel EN31 plate of size150x100x10 mm with ≈ 60 
HRC is considered as the work piece material and 
TaeguTecmake M9810048402 carbide milling turning 
inserts and with SCRM90TP45016R18DTGNL milling cutter 
with 4 cutting inserts was used in machining. For each 
experimental run, the metal removal rate is calculated by the 
weight loss method. Each experiment is run for a fixed length 
of 75 mm length.  
 
During each experiment the cutting temperature was 
measured by an IR Thermometer by maintaining 1.5 meter 
distance between the thermometer and cutting tool edge. 
Each experiment was repeated for three times and the 
average of the measures values were considered as the final 
response values. Table-3, represents the matrix of 
experimental values. The Figure-4, shows the experimental 
setup. The Figure -5 and 6 show the cutting tools & cutter 
and the IR Thermometer for temperature measurement used 
in experimentations. The recorded temperature using IR 
thermometer during the 10th experiment is shown in The 
Figure-7. 
 

 
 

Figure-4 Experimental setup 

 
Figure-5 Cutting inserts and the milling cutter 

 
 
 

 
 

Figure-6 IR Thermometer 
 

     
Figure-7 Recorded temperature using IR Thermometer 

during the 10th experiment 
 

Table -1: Machining conditions 
 

(a) 
Work piece 

material: 
EN 31 hardened to about 60HRC 

(b) 
Chemical 

composition: 

C-0.43%, Si-0.26%, Mn-0.58%, Cr-
1.17%, Ni- 

1.35%, Mo-0.25%, P-0.028%, S-
0.036% 

(c) 
Work piece 
dimensions: 

150x100x10 mm 

(d) 
Location of 
work piece: 

Between chuck over the table 

(e) 
Temperature 
measurement 

IR Thermometer 
Model:42570, Make: EXTECH 

Instruments. Range : up to 2000 
deg. C 

(f) 
Milling 

Machine 
Model : AGNI 45 

Make : BFW 

(g) Milling Cutter 
Model : 

SCRM90TP45016R18DTGNL 

Spind
le Work 

piece 

Cutt

e  

IR 
Spot 
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Make :TaeguTec 

(h) 
Cutting 
Inserts 

Designation : M9810048402 
Make : TaeguTec 

(i) 
Machining 

Type 
Dry Machining 

Table -2: Control factors and their levels 

 
no. 

Parameter Units Notation -1 0 1 

1 
Depth of 

cut 
mm X1 0.1 0.2 0.3 

2 Feed Rate mm/tooth X2 0.1 0.3 0.5 

3 
Cutting 
speed 

Rpm X3 120 180 240 

 

Table -3: Central composite design with corresponding 

output values of MRR and TC 

Exp. 
No. 

DOC F Vc 
Rpm 

MRR TC. 

mm mm/tooth grm/min OC 

1 0.1 0.1 120 0.00545 169.05 

2 0.1 0.1 180 0.00854 181.29 

3 0.1 0.1 240 0.01055 245.94 

4 0.1 0.3 120 0.00848 247.29 

5 0.1 0.3 180 0.01154 278.44 

6 0.1 0.3 240 0.01358 344.44 

7 0.1 0.5 120 0.02645 419.28 

8 0.1 0.5 180 0.02954 460.62 

9 0.1 0.5 240 0.03152 539.59 

10 0.2 0.1 120 0.02345 210.2 

11 0.2 0.1 180 0.02654 231.36 

12 0.2 0.1 240 0.02855 286.01 

13 0.2 0.3 120 0.02645 276.39 

14 0.2 0.3 180 0.02954 307.54 

15 0.2 0.3 240 0.03156 373.54 

16 0.2 0.5 120 0.04445 435.84 

17 0.2 0.5 180 0.04754 477.17 

18 0.2 0.5 240 0.04951 556.14 

19 0.3 0.1 120 0.04845 277.42 

20 0.3 0.1 180 0.05154 299.66 

21 0.3 0.1 240 0.05353 354.31 

22 0.3 0.3 120 0.05145 333.71 

23 0.3 0.3 180 0.05454 364.86 

24 0.3 0.3 240 0.05652 430.86 

25 0.3 0.5 120 0.06945 480.62 

26 0.3 0.5 180 0.07254 391.95 

27 0.3 0.5 240 0.05454 580.92 

 
 
 
 
 
 

Table -4: ANOVA for Response Surface TC Quadratic Model 

Source 
Sum of 

Squares 

  
Mean 

Square 
F 

Value 

p-
valu

e 
  

df 
Prob 
> F 

  

Model 3.88E+05 9 4.32E+04 
201.0

1 

< 
0.00
01 

signi
fican

t 

x1 9.08E+03 1 9.08E+03 
42.29

1 

< 
0.00
01 

  

x2 6.34E+04 1 6.34E+04 
295.1

8 

< 
0.00
01 

  

x3 2.17E+04 1 2.17E+04 
101.0

9 

< 
0.00
01 

  

x1x2 1.03E+03 1 1.03E+03 
4.783

6 
0.04

3 
  

x1x3 6.51E+01 1 6.51E+01 0.303 
0.58
91 

  

x2 x3 8.96E+02 1 8.96E+02 4.175 
0.05
68 

  

x1x1 1.29E+03 1 1.29E+03 6.013 
0.02
53 

  

x2 x2 1.07E+04 1 1.07E+04 
49.78

4 

< 
0.00
01 

  

x3 x3 3.17E+02 1 3.17E+02 
1.475

9 
0.24

1 
  

Residual 3.65E+03 17 2.15E+02       

Lack of 
Fit 

7.98E+03 5 1.80E+03 
8.141

7 
0.45 

not 
signi
fican

t 
R-

Squared 
    0.9907       

Adj R-
Squared 

    0.985763       

 
Table -5: ANOVA for Response Surface MRR Reduced 

Quadratic Model 
 

Source 
Sum of   Mean F 

p-
value 

  

Squares 
d
f 

Square Value 
Prob > 

F 
  

Model 9.50E-03 9 1.06E-03 
95.71

8 

< 
0.000

1 

significan
t 

x1 2.26E-03 1 2.26E-03 204.6 
< 

0.000
1 

  

x2 5.86E-04 1 5.86E-04 53.07 
< 

0.000
1 

  

x3 7.56E-06 1 7.56E-06 
0.685

1 
0.419

3 
  

x1x2 3.46E-05 1 3.46E-05 
3.138

7 
0.094

4 
  

x1x3 3.60E-05 1 3.60E-05 
3.262

6 
0.088

6 
  

x2 x3 3.77E-05 1 3.77E-05 
3.413

6 
0.082

1 
  

x1x1 3.43E-05 1 3.43E-05 
3.107

7 
0.095

9 
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x2 x2 1.98E-04 1 1.98E-04 
17.93

1 
0.000

6 
  

x3 x3 1.99E-05 1 1.99E-05 
1.805

1 
0.196

7 
  

Residua
l 

9.20E+0
3 

6 
1.53E+0

3 
      

Lack of 
Fit 

8.98E+0
3 

5 
1.80E+0

3 
8.141

7 
0.259

7 

not 
significan

t 
R-

Squared 
    

0.98064
8 

      

Adj R-
Squared 

    
0.97040

3 
      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure-7 Normal probability plot of the residuals for TC 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure-8 Interactive effect of depth of cut and feed on 

Temperature 

The estimated interactive response surface for temperature 
according to the design parameters of depth of cut and feed 
at the middle level of speed is shown in Figure-8. This figure 
displays that, the cutting temperature is lower at the lower 

levels of depth of cut and feed and has increasing nature to the 
increased levels of both depth of cut and feed. When the 
depth of cut and feed are increased together, the increased 
volume of the work piece material will be fed against the tool 
tip and hence the cutting temperature gets increased. 

The estimated interactive response surface for temperature 
according to the design parameters of depth of cut and speed 
at the middle level of feed is shown in Figure-9. This figure 
displays that, the cutting temperature is lower at the lower 
levels of depth of cut and speed and has increasing nature to 
the increased levels of both depth of cut and feed. 

As the depth of cut and speed are increased 
together, the chip flow velocity gets increased over the 
cutting inserts and hence the cutting temperature gets 
increased. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-9 Interactive effect of depth of cut and speed on 
Temperature 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure-9 Interactive effect of depth of cut and speed on 
MRR 
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The estimated interactive response surface for MRR 
according to the design parameters of depth of cut and 
speed at the middle level of feed is shown in Figure-10. 
This figure displays that the value of MRR increases with 
increase in depth of cut and cutting speed.  

The reason is, at higher depth of cut and higher cutting 
velocities the rate of metal fed against the cutting insert is 
more and hence increased MRR. 

 
 

Figure-10 Interactive effect of feed and speed on MRR 
 

Table -6: Normalized values and grey relational 
coefficients 

 

Exp. 
No. 

Normalized Values Doi 

MRR Temp. MRR Temp. 

grm/min OC grm/min OC 

1 0 1 1 0 

2 0.0461 0.9711 0.9539 0.0289 

3 0.0761 0.8182 0.9239 0.1818 

4 0.0452 0.815 0.9548 0.185 

5 0.0908 0.7413 0.9092 0.2587 

6 0.1213 0.5853 0.8787 0.4147 

7 0.3132 0.4083 0.6868 0.5917 

8 0.3593 0.3105 0.6407 0.6895 

9 0.3888 0.1238 0.6112 0.8762 

10 0.2685 0.9052 0.7315 0.0948 

11 0.3145 0.8527 0.6855 0.1473 

12 0.3445 0.7234 0.6555 0.2766 

13 0.3132 0.7462 0.6868 0.2538 

14 0.3593 0.6725 0.6407 0.3275 

15 0.3894 0.5165 0.6106 0.4835 

16 0.5817 0.3691 0.4183 0.6309 

17 0.6277 0.2714 0.3723 0.7286 

18 0.6571 0.0847 0.3429 0.9153 

19 0.6413 0.7437 0.3587 0.2563 

20 0.6874 0.6912 0.3126 0.3088 

21 0.7171 0.5619 0.2829 0.4381 

22 0.6861 0.6106 0.3139 0.3894 

23 0.7321 0.537 0.2679 0.463 

24 0.7617 0.3809 0.2383 0.6191 

25 0.9545 0.2633 0.0455 0.7367 

26 1.0006 0 -0.0006 1 
27 0.7321 0.0261 0.2679 0.9739 

 
Table -7: Gray relational grade and Ranks 

 

  xi (k)   

Exp. 
No. 

MRR Temp. 
gi Rank 

grm/min OC 

1 0.3333 1 0.6667 2 

2 0.3439 0.9453 0.6446 4 

3 0.3511 0.7333 0.5422 14 

4 0.3437 0.7299 0.5368 16 

5 0.3548 0.6591 0.5069 18 

6 0.3626 0.5466 0.4546 24 

7 0.4213 0.458 0.4397 25 

8 0.4383 0.4204 0.4293 26 

9 0.45 0.3633 0.4066 27 

10 0.406 0.8407 0.6233 5 

11 0.4218 0.7724 0.5971 8 

12 0.4327 0.6439 0.5383 15 

13 0.4213 0.6633 0.5423 12 

14 0.4383 0.6042 0.5213 17 

15 0.4502 0.5084 0.4793 22 

16 0.5445 0.4421 0.4933 20 

17 0.5732 0.407 0.4901 21 

18 0.5932 0.3533 0.4732 23 

19 0.5823 0.6612 0.6217 6 

20 0.6153 0.6182 0.6167 7 

21 0.6386 0.533 0.5858 10 

22 0.6143 0.5622 0.5882 9 

23 0.6512 0.5192 0.5852 11 

24 0.6772 0.4468 0.562 12 

25 0.9166 0.4043 0.6604 3 

26 1.0012 0.333 0.667 1 

27 0.6512 0.3392 0.4952 19 

 
Table -8: Optimal values of machining responses and the 

corresponding input parameters (26th Experiment) 

 

Exp. 
No. 

DOC F Vc 
Rpm 

MRR TC. 

mm mm/tooth grm/min OC 

1 0.1 0.1 120 0.00545 169.05 

2 0.1 0.1 180 0.00854 181.29 

3 0.1 0.1 240 0.01055 245.94 
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4 0.1 0.3 120 0.00848 247.29 

5 0.1 0.3 180 0.01154 278.44 

6 0.1 0.3 240 0.01358 344.44 

7 0.1 0.5 120 0.02645 419.28 

8 0.1 0.5 180 0.02954 460.62 

9 0.1 0.5 240 0.03152 539.59 

10 0.2 0.1 120 0.02345 210.2 

11 0.2 0.1 180 0.02654 231.36 

12 0.2 0.1 240 0.02855 286.01 

13 0.2 0.3 120 0.02645 276.39 

14 0.2 0.3 180 0.02954 307.54 

15 0.2 0.3 240 0.03156 373.54 

16 0.2 0.5 120 0.04445 435.84 

17 0.2 0.5 180 0.04754 477.17 

18 0.2 0.5 240 0.04951 556.14 

19 0.3 0.1 120 0.04845 277.42 

20 0.3 0.1 180 0.05154 299.66 

21 0.3 0.1 240 0.05353 354.31 

22 0.3 0.3 120 0.05145 333.71 

23 0.3 0.3 180 0.05454 364.86 

24 0.3 0.3 240 0.05652 430.86 

25 0.3 0.5 120 0.06945 480.62 

26 0.3 0.5 180 0.07254 392 

27 0.3 0.5 240 0.05454 580.92 

 
6. CONCLUSIONS 
 

 This work aimed to develop the empirical 
models and investigate the optimal 
machinability parameters of milling process 
during machining EN 31 tool steel.  

 In this consequence, milling experiments 
were conducted on vertical milling milling 
Centre based on central composite design 
with 27 experiments.  

 The response surface methodology was 
adopted to develop the mathematical 
models for the responses and ANOVA is 
used to check the adequacy of the 
developed models and were found that the 
developed second order models can 
explain the variation in the temperature up 
to the extent of 98.06% and 99.07%. Then 

these experimentally measured values 
were carried to the optimization. GRA was 
successfully implemented to the measured 
experimental runs.  

 The resulted optimal values of the milling 
process were listed. Hence, an operator can 
easily find out the optimal marching 
conditions without compromising at either 
metal removal rate or the cost of tooling 
with this investigation. 

REFERENCES 
 

[1] Okada, M., Hosokowa, A., Tanaka, R., Ueda, T. Cutting 
Performance of PVD-coated carbide and CBN tools in 
hard milling, International Journal of Machine Tools & 
Manufacture, 2011, 51, pp. 127–132. 

[2] Kochy, P., Dewes, R.C., Aspinwall, D.K. High speed end 
milling of hardened AISI D2 tool steel (~58 HRC), 
Journal of Materials Technology, 2002, 127, pp. s266–
273 

[3] Salomon, C. Verfahren zur Bearbeitung vonMetallen 
oder bei einer Bearbeitung durch schneidende 
Werkzeuge sich ähnlich erhaltende Werkstoffe, 
German patent No. 523594, 1931 

[4] Tönshoff, K. et al. Hochgeschwindigkeitsspanen 
metallischer Werkstoffe, WILWY-VCH Verlag Gmbh & 
Co. KGaA, 2005 

[5] Klocke et al. Characterization of Tool Wear in High-
Speed Milling of Hardened Powder Metallurgical 
Steels, Advances in Tribology,Volume 2011 (2011) 

[6] El-Magd, E., Treppmann, C. Mechanical behaviour of 
materials at high strain rates, Scientific Fundamentals 
of HSC, 2001, pps.113–136 

[7]  Aslan E., Camuscu N., Birgoren B. Design 
optimization of cutting parameters when turning 
hardened AISI 4140 steel (63 HRC) with Al2O3 + 
TiCN mixed ceramic tool. Mater. Des. 2007;28:1618–
1622. 

[8] Nalbant M., Gokkaya H., Sur G. Application of Taguchi 
method in the optimization of cutting parameters for 
surface roughness in turning. Mater. Des. 
2007;28:1379–1385. 

[9] Kalpakjian S., Schmid S.R. Manufacturing Engineering 
and Technology, International. 4th ed. Prentice Hall; 
Upper Saddle River, NJ, USA: 2001. pp. 536–681. 

[10]EI Baradie M.A. Cutting fluids: part I 
characterization. J. Mat. Proc. Tech. 1996;56:786–
797. 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

                Volume: 09 Issue: 10 | Oct 2022               www.irjet.net                                                                         p-ISSN: 2395-0072 

 

© 2022, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 631 
 

[11] Alauddin M., EL Baradie M.A., Hashmi M.S.J. 
Prediction of tool life in end milling by response 
surface methodology. J. Mater. Proc. Tech. 
1997;71:456–465. 

[12] Hasegawa M., Seireg A., Lindberg R.A. Surface 
roughness model for turning. Tribol. Int.1976;6:285–
289. 

[13] Alauddin M., El Baradie M.A., Hashmi M.S.J. 
Computer-aided analysis of a surface-roughness model 
for end milling. J. Mat. Proc. Tech. 1995;55:123–127. 

[14]  Alauddin M., El Baradie M.A., Hashmi M.S.J. 
Optimization of surface finish in end milling Inconel 
718. J. Mat. Proc. Tech. 1996;56:54–65. 

[15] EI-Baradie M.A. Surface roughness model for 
turning grey cast iron 1154 BHN. Proc. 
IMechE.1993;207:43–54. 

[16]  Bandyopadhyay B.P., Teo E.H. Application of 
factorial design of experiment in high speed turning. 
Proc. Manuf. Int. Part 4, Advances in Materials & 
Automation, Atlanta; GA, USA, ASME, NY. 1990. pp. 3–
8. 

[17] Gorlenko O.A. Assessment of starface roughness   
parameters   and   their interdependence. Precis. 
Eng.1981;3:105–108. 

[18]Thomas T.R. Characterisation of surface roughness. 
Precis. Eng. 1981;3:2–8. 

[19] Mital M. Mehta, Surface roughness prediction 
models   for fine turning. Int.   J.   Pro. Re. 
1988;26:1861–1876. 

[20] Sokovic, M., Kopac, J., Dobrzanski, L.A., Adamiak, M. 
Wear of PVDcoated solid carbide and mills in dry high-
speed cutting, Journal of Materials Processing 
Technology, 2004, pp. 422–426. 


