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Abstract - Exoplanet detection opens the door to the 
discovery of new habitable worlds and helps us understand 
how planets were formed. With the objective of finding 
earth-like habitable planets, NASA launched Kepler space 
telescope and its follow up mission K2. The advancement of 
observation capabilities has increased the range of fresh 
data available for research, and manually handling them is 
both time-consuming and difficult. Machine learning and 
deep learning techniques can greatly assist in lowering 
human efforts to process the vast array of data produced by 
the modern instruments of these exoplanet programs in an 
economical and unbiased manner. However, care should be 
taken to detect all the exoplanets precisely while 
simultaneously minimizing the misclassification of non-
exoplanet stars. In this paper, we utilize two variations of 
generative adversarial networks, namely semi-supervised 
generative adversarial networks and auxiliary classifier 
generative adversarial networks, to detect transiting 
exoplanets in K2 data. We find that the usage of these 
models can be helpful for the classification of stars with 
exoplanets. Both of our techniques are able to categorize the 
light curves with a recall and precision of 1.00 on the test 
data. Our semi-supervised technique is beneficial to solve 
the cumbersome task of creating a labeled dataset. 

Key Words:  Exoplanets, photometric method, 
detection, imbalanced dataset, deep learning, 
generative adversarial networks 

1. INTRODUCTION  

Exoplanets, also known as extrasolar planets, are planets 
that orbit stars out side our solar system. For centuries 
humans have questioned if additional solar systems exist 
among the billions of stars in the universe. Despite 
numerous dubious claims of exoplanet discovery, 
Wolszczan and Frail are credited with discovering the first 
verified exoplanet in 1992. Exoplanet discovery is still in 
its early phases. The hunt for exoplanets helps us 
comprehend planet formation and the discovery of Earth-
like habitable planets. It aids in the collection of statistical 
data and  

 

Fig -1: Transit photometry: The flux intensity of the star 
varies at different point of time as the planet moves 
around the star. The presence of periodic dips in the 
intensity curves can confirm the presence of an exoplanet. 

information about exoplanet atmospheres and 
compositions, as well as their host stars. It can also help us 
understand how the solar system formed. In total, 5190 
exoplanets have been identified as of October 2022[1]. 
The standard exoplanet detection techniques include 
direct imaging, Doppler Spectroscopy , astrometry, 
microlensing, and the transit method [2]. Most of the 
known planets have been discovered by the transit 
method. If we detect periodic drops in flux intensities of 
the star when a planet passes in front of it, we can confirm 
that a planet transits around the star. In this paper we use 
the transit method of analysing light curves. However, 
analysing the flux curve to find them is a very tedious task 
because vast amounts of data are produced from the 
observatories that are often noisy.   
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The search of exoplanets took a step forward with the help 
of observatories such as Kepler [3], the CoRoT spacecraft 
[4], the Transiting Exoplanet Survey Satellite (TESS) [5], 
and others [6-8]. Although the Kepler mission concluded a 
few years ago and the data is well-systemised and publicly 
available, it is still far from being completely put to use. 
These data can provide insights that could pave the way 
for future discoveries in the coming decades. Usually 
professional teams manually inspect the light curves for 
possible planet candidates. They vote for each other to 
reach a final decision after concluding their study [9,10]. 
To properly and quickly  determine the presence of these 
planets without any manual efforts, it will be necessary to 
automatically and reliably assess the chance that 
individual candidates are, in fact, planets, regardless of 
low signal-to-noise ratios-the ratio of the expected dip of 
the transit to the predictable error of the observed 
average of the light intensities within the transit. 

Furthermore, exoplanet classification is an example of an 
imbalanced binary classification problem. The issue with 
the data is that the available  number of stars with 
exoplanets is far lesser than the number of stars with no 
exoplanets. Fortunately, the advancements in machine 
learning help us to automate the complex computational 
tasks of learning and predicting patterns in light curves 
within a short time. In 2016, a robotic vetting program 
was developed to imitate the human analysis employed by 
some of the planet candidate catalogs in the Kepler 
pipeline [11]. The Robovetter project was a decision tree 
meant to eliminate the false-positive ‘threshold crossing 
events’(TCEs) and to determine whether there are planets 
having a size similar to that of the earth present around 
any Sun-like stars. Likewise, in the past several other 
notable attempts such as the autovetter [12] were made to 
propound the applications of machine-learning 
methodologies in spotting exoplanets in  Kepler light curve 
data.  

Since the introduction of the Astronet, a deep learning 
model that produced great results in automatic vetting of 
Kepler TCEs [13] the advantages of using deep learning 
models for the classification of the light curves are more 
investigated. Despite the fact that deep learning methods 
are computationally expensive, since they offer better 
results for complex problems, many researchers attempt 
to shift their attention from classical machine learning 
methods to deep learning methods. Also, as deep learning 
is a dynamic field that is constantly evolving, there are 
possibilities of new techniques other than the 
conventional models that might prove to be more efficient 
in exoplanet detection. Also, as astronomical projects 
include long-term strategies and are critical in 
educational, environmental and economical aspects, 
researches should adhere to accuracy and ethics. The 
biased research could cynically affect the scientific 

training, education and financing of future astronomers. In 
exoplanet detection we should not falsify or leave out any 
potential exoplanet candidates and fully harness the data 
available from the missions. Being motivated by these, we 
propose two deep learning models, Semi Supervised 
Generative Adversarial Networks (SGAN) and Auxiliary 
Classifier Generative Adversarial Networks (ACGAN), for 
the classification of exoplanets. We call these methods  
ExoSGAN and ExoACGAN respectively. They produce 
comparable and sometimes better  classification results to 
the techniques so far used. 

The paper is organized into six sections. Section 2 includes 
relevant works in this field. Section 3 contains an 
explanation of the methodologies utilized in this article. 
Section 4 discusses the materials used,  data preprocessing 
prior to creating our model along with the architecture 
used to create the models. Section 5 discusses the 
evaluation measures utilized and the findings obtained. 
The study closes with a section that summarises the 
findings and future directions in this research field. 

2. RELATED WORKS 

A lot has happened in the realm of astrophysics as well as 
deep learning in the last 25 years. Many researchers are 
investigating the use of deep learning algorithms for 
exoplanet discovery. One of the widely used techniques for 
the detection of extrasolar planets include Box-fitting 
Least  Squares(BLS)[14]. The approach is based on the 
box-shape of recurrent light curves and takes into account 
instances with low signal-to-noise ratios. They use binning 
to deal with the massive number of observations. They 
point out that an appreciable identification of a planetary 
transit necessitates a signal-to-noise ratio of at least 6. 
Cases that appear to be a good fit are then manually 
assessed. However, the method is exposed to the risk of 
false-positive detections generated by random cosmic 
noise patterns. 

A transit detection technique that makes use of the 
random forest algorithm is the signal detection using 
random forest algorithm (SIDRA) [15].  SIDRA was trained 
on a total of 5000 simulated samples comprising 1000 
samples from each class namely constant stars, transiting 
light curves, variable stars, eclipsing binaries and 
microlensing light curves.  20,000 total samples from 
these different classes were tested where a success ratio of 
91 percent is achieved for transits and 95-100 percent for 
eclipsing binaries, microlensing, variables and constant 
light curves. They recommended that SIDRA should only 
be used in conjunction with the BLS method for detecting 
transiting exoplanets since SIDRA had generated low 
results on transiting light curves.   

In 2017, Sturrock et al [16] conducted a study on the use 
of the machine learning methods namely, random forest 
(RF), k-nearest neighbour (KNN) and Support Vector 
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Machine (SVM) in classifying cumulative KOI data (Kepler 
Objects of Interest). In terms of the fraction of 
observations identified as exoplanets, SVM did not give the 
desired prediction results. The RF model has the risk of 
overfitting the dataset. Inorder to reduce overfitting, 
measures such as StratifiedShuffleSplit, feature reduction, 
cross validation etc had to be done. It was found that 
random forest gave a cross-validated accuracy of 98 
percent which is the best among the other three methods. 
Using Azure Container Instance and an API (application 
programming interface) the random forest classifier was 
made accessible to public. 

In 2018, Shallue and Vanderburg [13] researched about 
identifying exoplanets with deep learning. This is a notable 
work in the field and is considered to be the state of the art 
method. They used NASA Exoplanet Archive: Autovetter 
Planet Candidate Catalog dataset and introduced a deep 
learning architecture called Astronet that utilizes 
convolutional neural networks(CNN). There are 3 separate 
input options to the network: global view, local view and 
both the global and local views. These input 
representations were created by folding the flattened light 
curves on the TCE period and binning them to produce a 1 
dimensional vector. During training they augmented the 
training dataset by using random horizontal reflections. 
They used the google-vizier system to automatically tune 
the hyperparameters including the number of bins, the 
number of fully connected layers, number of convolutional 
layers, dropout probabilities etc. After model optimization 
they used model averaging on independent copies of the 
model with different parameter initializations to improve 
the performance by not making the model depend upon 
different regions of input space. The best convolutional 
model received AUC (Area Under the Curve) of 0.988 and 
accuracy of 0.960 on the test set.  

Astronet K2, a one-dimensional CNN with maxpooling, 
was trained in 2019 to discover planet candidates in K2 
data [19]. This deep learning architecture is adapted from 
the model created by Shallue and Vanderburg [13]. It 
resulted in a 98 percent accuracy on the test set. EPIC 
246151543 b and EPIC 246078672 b were discovered as 
genuine exoplanets by Astronet K2. They are both in 
between the size range of the Earth and Neptune. Looking 
at the precision and recall of Astronet K2, if the 
classification threshold is set such that the model offers a 
recall of 0.9 in the test set of Kepler data, the precision rate 
will only be 0.5. For Astronet K2 to estimate planetary 
occurrence rates in K2 data the model should be enhanced 
to produce a recall of 90 percent while simultaneously 
maintaining a precision of 95 percent because K2 data 
contains more false positive samples. 

Later in 2020, 'TSfresh' library and 'lightbgm' tool was 
used in exoplanet detection by Malik et al[20] . An 
ensemble of decision trees called gradient boosted trees 
(GBT) and 10-fold CV (cross validation) technique were 
used to create a model to classify light curves into planet 

candidates and false positives. Their prediction results in 
an AUC of 0.948, precision of 0.82 and recall of 0.96 in 
Kepler data. They provide comparable results to Shallue 
and Vanderburg [13] and also prove that their method is 
more efficient than the conventional BLS( box least 
squares fitting). However, the performance of this method 
was poor on the class imbalanced TESS data. 

Yip et al [21] used generative adversarial networks (GAN) 
to detect planets through direct imaging technique. GAN 
was used to create a suitable dataset which is further 
trained using convolutional neural networks classifier that 
can locate planets over a broad range of signal-to-noise 
ratios.  

Most of the studies related to using artificial intelligence in 
exoplanet detection utilize the random forest algorithm 
[23,24] and CNNs [25,26]. Other heuristic approaches to 
find extrasolar planets using stellar intensities include 
KNN [17] and  self-organizing maps [18]. In 2021 
Priyadarshini and Puri [22] used an ensemble-CNN model  
on the Kepler light curves.   Different machine learning 
algorithms such as Decision Tree, Logistic Regression, 
MLP (Multilayer Perceptron), SVM( Support Vector 
Machines, CNN, random forest classifier and their 
proposed ensemble-CNN model were implemented and 
compared with each other. They used a stacked model that 
is trained similarly as k-fold validation. The decision tree, 
RF, SVM, and MLP models were the meta learners and CNN 
model was employed as base learner in their proposed 
work. The model was capable to produce an accuracy of 
99.62 percent. However training ensemble models can be 
expensive and hard to interpret since we deal with light 
curves. 

Furthermore, the use of semi supervised generative 
adversarial algorithm (SGAN) have been proved to be 
efficient in retrieving potential radio pulsar candidates 
[27]. The study indicates that SGAN outperforms standard 
supervised algorithms in real world classification. The 
best performing model in the study gives an overall F-
score of 0.992. This model has been already incorporated 
into the HTRU-S Lowslat survey post-processing pipeline, 
and it has found eighteen additional pulsars.  

Moreover, auxiliary classifier generative adversarial 
networks (ACGAN) have been useful in situations where 
imbalanced data is available for study. For instance, Wang 
et al [28] developed a framework that gives improved and 
balanced performance for detecting cardiac arrhythmias 
using a data augmentation model and ACGAN. They also 
find that ACGAN based data augmentation framework 
gives better classification results while addressing 
imbalanced data.  Additionally, Sutedja et al [29] suggested 
an ACGAN model to tackle an imbalanced classification 
issue of fraud detection in debit card transaction data. The 
study also compares the classification performance of the 
ACGAN model used with that of a CNN model-having 
similar architecture to the ACGAN discriminator model. 
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They believe that because the ACGAN model produces 
better outcomes, it may also be used to solve unbalanced 
classification issues. 

These studies reveal that exoplanet detection issue has 
been approached using standard artificial intelligence 
techniques but it remains a challenge that deserves more 
attention. Hardly any exploration has been done that 
reveals the use of novel deep learning techniques in 
astronomy. We capitalize the usage of the irrefutably 
appealing efficiency of semi-supervised generative 
adversarial networks and auxiliary classifier generative 
adversarial networks to tackle the issue. These are already 
proved to be useful in biomedical applications and other 
fields. 

3. METHODS 

3.1 Generative Adverserial Networks 

 

Fig -2:  An overview of the GAN framework at a high 
level. The generator generates fake samples. Discriminator 
accepts false and real data as input and returns the 
likelihood that the provided input is real. 

Goodfellow et al (2014) [30] introduced Generative 
Adversarial Networks in 2014. A generator G and a 
discriminator D are the two major components of this 
machine learning architecture. Both of them are playing a 
zero-sum game in which they are competing to deceive 
one other. The concept of the game can be summarized 
roughly as follows: The generator generates images and 
attempts to fool the discriminator into believing that the 
produced images are real. Given an image, the 
discriminator attempts to identify whether it is real or 
generated. The notion is that by playing this game 
repeatedly, both players will improve, which implies that 
the generator will learn to produce realistic images and 
the discriminator will learn to distinguish the fake from 
the genuine.  

G is a generative model which maps from latent space z 
to the data space X as G(z;Ө) and tries to make the 
generative samples G(z) as close as possible to the real 
data distribution Pdata (x). Pz(z) is the noise distribution. D 
[given by D(x;Ө2)] discriminates between the real samples 
of data (labeled 1) and the fake samples (labeled 0) 
generated from G and outputs D(x) ∈ (0,1). The loss 

function of GAN can be derived from the loss function of 
binary cross entropy. 

                                                    

where y is the original data and   is the reconstructed 
data. The labels from Pdata (x) is 1. D(x) and D(G(z)) are the 
discriminator's probabilities that x is real and G(z) is real. 
Substituting them in equation (1) for real and fake 
samples, we get the two terms log(D(x)) and log(1-
D(G(z)). Inorder to classify real and fake samples D tries to 
maximize the two terms. Generator’s task is to make 
D(G(z)) close to 1, therefore it should minimize the two 
terms above. Thereby, they follow a two player minmax 
game.The loss function of GAN can be expressed as 
follows, 

minGmaxD V(D,G) = Ex~Pdata(x)[logD(x)] + Ez~Pz(z)log (1-
(D(G(z) ) ]                               (2) 

E represents expectation. 

3.2 Semi-Supervised Generative Adversarial 
Networks(SGAN) 

 

Fig -3: Illustration of Architecture of ExoSGAN 

An extension to GAN was made by Odena (2016) [31] 
called SGAN to learn a generative model and a 
classification job at the same time. Unlike the traditional 
GAN that uses sigmoid activation function to distinguish 
between real and fake samples, SGAN uses softmax 
function to yield N+1 outputs. These N+1 include the 
classes 1 to N and the fake class. Salimans et al (2016) [32] 
presented a state of the art method for classification using 
SGAN on MNIST, CIFAR-10 and SVHN datasets at that time. 
In our case SGAN should produce outputs-exoplanets, non 
exoplanets and fake samples. Taking x as input, a standard 
supervised classifier produces the class probabilities 
(stars having exoplanets and stars having no exoplanets). 
We achieve semi-supervised learning here by providing 
the generated fake samples from   G labeled y = N+1 to the 
D and categorising them as fake samples thereby 
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introducing an additional dimension. Let the model 
predictive distribution be (Pmodel(y| x)) as in case of a 
standard classifier where y is the label corresponding to x. 
Pmodel(y=N+1| x) gives the probability that x is fake.  

The loss function of SGAN consists of an unsupervised 
and a supervised component.  

L = Lunsupervised + Lsupervised                         (3) 

The unsupervised component has two parts. Given the 
data being real, one minus the expectation of the model 
producing the result as fake constitutes the first part. The 
next part is the expectation of the model producing the 
result as fake when the data is from G. 

We can notice that substituting D(x) = 1- Pmodel(y= N+1| 
x) into the Lunsupervised yields equation 2. 

Lunsupervised = -Ex~Pdata(x)log[1-Pmodel(y=N+1|x)] + 
Ex~Glog[Pmodel(y=N+1|x)]                                               (4) 

If the data is from any of the N classes, the supervised 
loss component is the negative log probability of the label. 

Lsupervised = - Ex,y~Pdata(x,y) log Pmodel (y|x, y<K+1)            (5) 

Therefore, the loss function  of SGAN can be given as 

L = -Ex,y~Pdata(x,y)[logPmodel(y|x)] - 
Ex~G[logPmodel(y=N+1|x)]      (6)  

The output of the softmax does not change when a 
common function f(x) is subtracted from each of the 
classifier's output logits. So if we fix the logits of the N+1th 
class to 0, the value doesn’t change. Finally if Z(x)  = 

∑ 
              is the normalized sum of the 

exponential outputs, the discriminator can be given as 

       
    

      
                                                 (7) 

3.3 Auxillary Classifier Generative Adversarial 
Networks(ACGAN) 

 

Fig -4: Illustration of Architecture of ExoACGAN 

Mirza and Osindero [33] presented conditional GAN 
(CGAN), an enhancement to GAN, to conditionally generate 
samples of a specific class. The noise z  along with class 
labels c are given as input to generator of CGAN to 
generate fake samples of a specific class (Xfake=G(c,z)). This 
variation improves the stability and speed while training 
GAN. The discriminator of CGAN is fed with class labels as 
one of the inputs. ACGAN is a CGAN extension in which 
instead of inputting class labels into D, class labels are 
predicted. It was introduced by Odena et al [34]. The  
discriminator of ACGAN can be thought of as having two 
classification functions: one that predicts whether the 
input is real or false(probability P(S|X)), and another that 
classifies the samples into one of the classes(probability  
P(C|X)).  LC, the log-likelihood of the correct class and LS , 
the log likelihood of the source make up the two parts of 
the loss function of ACGAN. 

LS=E[logP(S=real|Xreal)]+E[logP(S=fake|Xfake)]        (8) 

LC=E[logP(C=c|Xreal)]+E[logP(C=c|Xfake)]                  (9) 

The generator and discriminator play a minmax game 
on  LS as in case of normal GAN. They try to maximise LC. In 
contrast to the conditional GAN, the resultant generator 
learns a latent space representation irrespective of the 
class label. 

4. DATA SOURCES AND IMPLEMENTATION 

4.1 Dataset 

Kepler Mission: NASA began the Kepler mission on March 
7, 2009, to study stars and hunt for terrestrial planets, 
particularly habitable planets with liquid water. Two of 
Kepler's four reaction wheels malfunctioned by May 11, 
2013. At least three of them should be in good shape to 
keep the spaceship pointed in the right direction. Because 
the damage could not be repaired, the K2 -"Second Light"- 
was initiated (February 4, 2014), which takes advantage of 
Kepler's remaining capabilities. K2 conducted ecliptic-
pointed ‘Campaigns’ of 80 days duration. The light 
intensities were recorded every 30 minutes. These stellar 
light intensities are used to look for dips in order to detect 
any probable exoplanets transiting the star. A total of 477 
confirmed planets were found by K2 as of December 2021. 
We use data from K2's third campaign, which began on 
November 12th, 2014, for this study. A few samples from 
other campaigns were also used to enhance the number of 
stars containing exoplanets. However, Campaign 3 
accounts for nearly all of the data. Almost 16,000 stars 
were included in the field-of-view(FOV) of the third 
Campaign. Kepler’s data was made public by NASA via the 
Mikulski Archive. We used the open-sourced data from 
Kaggle [35] which was created by transposing the PDC-
SAP-FLUX column(Pre-search Data Conditioning) of the 
original FITS file. 
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Train and test data: The train set includes 5087 
observations, each with 3198 features. The class labels are 
listed in the first column. Label 2 denotes stars having  

 

Fig -5: Plot of the light curves of a few stars from the 
dataset with exoplanets and without exoplanets-before 
preprocessing. X-axis gives the time and Y-axis shows the 
flux intensities. The curves are not normalized and 
standardized. Also note the presence of huge outliers. 

exoplanets, whereas label 1 denotes stars without 
exoplanets. The same is true for the test set. The following 
columns 2-3198 show the intensity of light emitted by the 
stars at equal time intervals. As the Campaign lasted 80 
days, the flux points were taken around 36 minutes apart 
(3197/80). There are 545 samples in the test data, 5 of 
which contain exoplanets. These are the unseen data used 
to test the method's outcomes. We have renamed the class 
labels, 1 for exoplanet-stars and 0 for nonexoplanet-stars 
for convenience. Figure 5 illustrates few samples from 
train data. 

4.2 Data Pre-processing 

1. The data contains no duplicates and null values as 
it has already been de-noised by NASA. 

2. When we take a look at the data, we notice that 
there are many outliers in intensity values. Since 
we search for dips, it is important not to eliminate 
outlier clusters caused by transits that naturally 
belong to the target star. So we remove a tiny 
fraction of the upper outliers and replace them 
with mean of adjacent points. Later Fast Fourier 
Transform, followed by gaussian filter is applied 
to convert the raw flux from temporal to 
frequency domain and smoothen the curve. 

3. As the features are in various ranges, we should 
normalize the data such that the row values range 
between -1 and 1. We may also standardize the 
data by using StandardScaler to ensure the 
column values have a standard deviation of one. 
Figure 6 illustrates the light curves after the 
preprocessing steps. 

 

Fig -6: Plot of the light curves of a few stars with 
exoplanets and without exoplanets-after preprocessing. X-
axis shows the frequency and Y-axis plots the flux 
intensity. The curves are normalized and standardized as 
well as converted into frequency domain. The major upper 
outliers are also removed. 

4.3 Model Architecture and Training : ExoSGAN  

The generator G takes noise from a random normal 
distribution (standard deviation 0.02) in the latent space 
and generates fake flux curves, which are one of three 
inputs to D. The true dataset, which comprises the flux 
curve as well as its labels, is the next input to D. The final 
set of inputs comes from real samples as well, but this time 
they are unlabeled. 

A convolutional neural network with two output layers, 
one with loss function binary cross entropy and the other 
with sparse categorical cross entropy, makes up the 
discriminator network. The second output layer uses a 
softmax activation function to predict the stars with and 
without exoplanets while the first output layer uses 
sigmoid activation to find the realness of the data. In the 
generator a transpose of 1 dimensional convolutional 
layer followed by dense layers is used. We also use 
BatchNormalisation and LeakyReLu with a slope of 0.2. A 
tanh activation function is employed in the output layer.  

We get a better performance model when we increase the 
number of labeled samples to 148 (74 positive and 74 
negative samples). To slightly increase the positive labeled 
real samples we reverse the order of the flux points 
preserving the shape and add them to the original dataset. 
Now the train dataset contains 74 light curves with 
exoplanets and 5050 light curves with no exoplanets. Still 
the imbalance remains the same with ratio 1:100 
exoplanet and non exoplanet stars.  

 The training procedure of GAN includes holding D 
constant while training G and vice versa. We use a learning 
rate η=4e-6 and β1= 0.5. G is trained via D and 
Discriminator D is a stacked model with shared weights 
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where the results can be reused.  The unsupervised model 
is stacked on top of the supervised model before the 
softmax activation function where the former takes output 
from the latter.  

Figure 3 shows the SGAN model architecture used in this 
paper. 

4.3 Model Architecture and training: ExoACGAN 

In the architecture adopted here, we feed random noise 
and the class labels of exoplanet and non-exoplanet light 
curves into the generator, which subsequently produces 
synthetic data. The discriminator receives created flux 
intensity curves as well as real flux intensity curves as 
input. It guesses if the data is authentic or bogus and 
distinguishes between light curves with and without 
exoplanets.  

The discriminator is implemented as a 1-dimensional 
convolutional network with input shape(3197,1). The 
learning rate  of D is set to η=4e-5 while that of G is η= 4e-
6.  Similar to Exo-SGAN, D has two output layers where the 
first predicts real/fake class and the second gives the 
probability of the stars having exoplanets. The generator 
model takes in latent space with 100 dimensions and the 
single integer class labels. The latent vector is given to a 
dense layer and later reshaped. We use an embedding 
layer in G to feature map the class labels with a dimension 
of 10 (arbitrary). This can then be interpreted by a dense 
layer. Afterwards, the tensors formed by noise and class 
labels are concatenated producing an additional channel 
and sent through a 1-dimensional convolutional transpose 
layer, which is flattened and then passed through 3 dense 
layers later to finally produce curves of 3197 flux points. 
Also, LeakyRelu and Batch normalisation are used to 
provide regularization. The output layer is designed with a 
hyperbolic tangent activation function. ACGAN also uses a 
composite model like SGAN where the generator is trained 
via the discriminator. Figure 4 shows the SGAN model 
architecture used in this paper. 

5. EVALUATION 

5.1 Metrics used for evaluation 

1. Confusion Matrix: The summarization of the 
classification performed by Exo-SGAN and Exo-
ACGAN can be given by a confusion matrix. It 
provides information not only on the faults 
produced, but also on the sorts of errors made. 
For binary classification, it is a 2x2 matrix of 
actual and predicted positive and negative 
classifications as given in Table1:  

where,  

TP : True positive (A star with exoplanet 
predicted as a star with exoplanet)  

FP: False positive (A star without exoplanet 
predicted as a star with exoplanet)  

FN: False negative (A star without exoplanet 
predicted as star with exoplamet) 

TN: True negative (A star without exoplanet 
predicted as a star without exoplanet)  

Table -1: Confusion matrix for exoplanet classfication 

 

2. Accuracy:  When evaluating a model for 
classification issues, accuracy is frequently used. 
As the name implies, accuracy is the number of 
right predictions divided by the total number of 
predictions. An accuracy of 1.00 means that all of 
the samples were properly categorized. However, 
in this situation, as the data we have is very 
imbalanced, accuracy alone cannot be used to 
evaluate the performance of the models since an 
99 accuracy of 0.99 might also suggest that all of 
the samples are placed into the majority class. 

           
     

           
 

3. Precision: Precision seeks to address the issue of 
how many positive identifications were truly 
correct. A precision of 1 indicates that the model 
produced no FP. To find precision we use the 
formula 

            
  

     
 Precision is the ratio 

between the true positives to the total of true 
positives and false positives. 

4. Recall: The proportion of positive samples 
recovered is referred to as recall. It is a useful 
metric when we need to accurately categorise all 
of the positive samples. Sensitivity is another 
term for recall. 

 

 Predicted 
Negative 

Predicted 
Positive 

Total 

Actual Negative TP FP TP+FP 

Actual Positive FN TN FN+TN 

Total TP+FN FP+TN N     
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5. Specificity: Specificity is found by dividing the 
true negatives by the total number of actual 
negative samples. Specificity answers the 
question of how many stars with no exoplanets 
did the model accurately predict. 

              
  

     
 

6. F-beta score: The harmonic mean of precision and 
recall is used to get the F-score. F-beta is an 
abstraction of the F-score in which the balance of 
precision and recall in the computation of the 
harmonic mean is regulated by a coefficient called 
β. In the computation of the score, a beta value 
greater than 1.0, such as 2.0, provides more 
weight to recall and less weight to precision. 

Fβ   
                          

                    
 

F-2 Score can be obtained by substituting β=2. 

F2 = 
 

 

         
 

 

      

 

5.2 Results and Discussion 

The ExoSGAN and ExoACGAN models produce 
encouraging results in the classification of exoplanets. It 
should be noted that to the best of our knowledge semi-
supervised generative adversarial networks and auxiliary 
classifier generative adversarial networks have not yet 
been used for the classification of exoplanet stars. Based 
on our findings, we believe that these approaches are 
extremely promising for detecting exoplanets from light 
curves.  

Table -2: Confusion matrix of Exo-SGAN model on 
training dataset 

 Predicted: 
without 

exoplanet 

Predicted: 
with 

exoplanet 

Total 

Actual: without 
exoplanet 

5032 18 5050 

Actual: with 
exoplanet 

0 74 74 

Total 5032 92 5124   

 

 

Table -3: Confusion matrix of Exo-ACGAN model on 
training dataset 

 Predicted: 
without 

exoplanet 

Predicted: 
with 

exoplanet 

Total 

Actual: without 
exoplanet 

5041 9 5050 

Actual: with 
exoplanet 

0 74 74 

Total 5041 83 5124   

 

Table -4: Confusion matrix of Exo-SGAN and Exo-ACGAN 
model on testing dataset 

 Predicted: 
without 

exoplanet 

Predicted: 
with 

exoplanet 

Total 

Actual: without 
exoplanet 

565 0 565 

Actual: with 
exoplanet 

0 5 5 

Total 565 5 190 

 

Table -5: Results of the performance of Exo-SGAN model 
on train and test data 

Exo-SGAN Training Testing 

Accuracy 0.996 1.00 

Precision 0.804 1.00 

Recall 1.00 1.00 

Specificity 0.996 1.00 

F-Score 0.954 1.00 

 
Table -6: Results of the performance of Exo-ACGAN model 

on train and test data 

Exo-SGAN Training Testing 

Accuracy 0.998 1.00 

Precision 0.892 1.00 

Recall 1.00 1.00 

Specificity 0.998 1.00 

F-Score 0.976 1.00 
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 We argue that, among the assessment criteria described 
above, recall is the most important since we should not 
overlook any stars with exoplanets. As a result, we trained 
our models to provide the highest possible recall. 
Maximum recall is at the expense of precision. A model 
with high recall may have low precision. This is known as 
the precision-recall trade-off. In our case, having a few 
stars without exoplanets labelled as stars with exoplanets 
can be compromised if we can properly categorise each 
star with exoplanets. It is important to remember that the 
data is extremely biased with a majority of non exoplanet 
candidate stars. Therefore as mentioned earlier, accuracy 
cannot be considered as a proper metric for evaluation. As 
we place greater emphasis on recall, we increase the 
weight of recall in the F-score and set the beta value to 2. 

The models, both ExoSGAN and ExoACGAN, output 
probabilities of a star containing exoplanet. The default 
threshold for such a classification task is often set at 0.5. 
Since we deal with imbalanced data and aim to take out all 
the lighcurves containing the transit, we should optimize 
the threshold. We choose our threshold to be 0.81 for the 
semi-supervised classification model and 0.77 for the 
auxiliary classifier generative adversarial network. Both of 
these models give us a perfect recall of 1.00 on the train 
and test set for the chosen threshold. We get a precision of 
0.802 from Exo-SGAN and 0.892 from Exo-ACGAN on the 
train data. While training, Exo-ACGAN results in an 
accuracy of 99.8  whereas Exo-SGAN gives an accuracy of 
99.6. When we test our models on unseen data both Exo-
ACGAN and Exo-SGAN give a perfect accuracy of 100 
percent. All the 565 non-exoplanet stars and 10 exoplanet 
stars in the test set are  

 

Chart -1: A comparison of the outcomes of each of the 
Exo-SGAN and Exo-ACGAN assessment metrics using train 

data 

 

Chart -2: A comparison of the outcomes of each of the 
Exo-SGAN and Exo-ACGAN assessment metrics using test 

data 

classified correctly. Therefore, the precision, recall, 
specificity, and f-score turns out to be 1.00 for both Exo-
SGAN and Exo-ACGAN on test data as shown in Table 5 
and 6. On the train samples, out of 5050 non-exoplanet 
stars only 8 have been misclassified by Exo-ACGAN, and 
only 18 have been misclassified by Exo-SGAN. The 
confusion matrix in Table 2, 3 and 4  tabulates the 
classification results of our experiments.  

When we compare Exo-SGAN and Exo-ACGAN, we can find 
that ACGAN marginally surpasses Exo-SGAN. Both have a 
recall of one, but the latter has a gain of 0.2, 0.09, and 0.09 
in accuracy, precision, and specificity while training. 

It can be speculated that during the training and testing 
procedure of Exo-ACGAN, the adversarial training 
technique assisted in reducing the impact of the 
imbalanced dataset. As a result, the prejudice towards the 
majority class is reduced. The discriminator model is 
taught to learn patterns from both actual and generated 
data in an adversarial manner. As a consequence, in order 
to generalize the patterns from the training dataset, the 
discriminator model learnt a greater number of richer 
patterns.  

6. CONCLUSIONS AND FUTURE WORKS 

In this paper, we utilise the Semi-Supervised Generative 
Adversarial framework and Auxilary Classifier Generative 
Adversarial framework to detect exoplanets using the flux 
curves of stars. The performance of both methods is 
noteworthy since both of them properly detect all 
lightcurves with transit. Exo-SGAN and Exo-ACGAN both 
has a recall rate of 100. The capacity to use unlabeled 
candidates to get better outcomes is the key advantage of 
our proposed network Exo-SGAN. We anticipate that, as 
the number of exoplanet candidates increase and 
maintaining a big labelled dataset becomes more difficult, 
this method will become even more beneficial for future 
exoplanet detection. Even though the data is extremely 
unbalanced, Exo-ACGAN and Exo-SGAN are able to 
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produce better results even without the use of any 
upsampling approaches like SMOTE. 

As for the next steps, these architectures can be tried out 
on the raw lightcurves from the Kepler mission, provided 
Graphical Processing Units(GPU) and hardware of great 
performance since a large amount of data must be 
handled. The hyperparameters can also be tuned to give 
better performance. Additionally, experimenting with 
various data-preprocessing approaches for eliminating 
outliers may improve the performance.  One method to 
attempt in order to solve the class imbalance issue is to 
optimize the loss function to produce data only from the 
minority class while training [36]. This can bring a balance 
between the samples of both classes. Yet another 
technique to improve the classification accuracy is the use 
of Bad GAN [37] in which the generator’s goal is more 
focused to produce data that complements the 
discriminator’s data.  

However, our models can provide a very reliable system 
for finding all the true positives in our data at the current 
stage. It is hoped that these deep learning approaches 
would pave the way for a new era in the field of exoplanet 
hunting. 
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