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Abstract - Point cloud-based learning has increasingly 
attracted the interest of many in the automotive industry for 
research in 3D data which can provide rich geometric, shape 
and scale information. It helps direct environmental 
understanding and can be considered a base building block in 
prediction and motion planning. The existing algorithms 
which work on the 3D data to obtain the resultant output are 
computationally heavy and time-consuming. In this paper, an 
improved and optimized implementation of the original 
Complex-YOLO: Real-time 3D Object Detection on Point Clouds 
is done using YOLO v4 and a comparison of different rotated 
box IoU losses for faster and accurate object detection is done. 
Our improved model is showing promising results on the KITTI 
benchmark with high accuracy.  
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1. INTRODUCTION  

With the rapid improvement in 3D acquisition technologies 
in real-time, we can extract the depth information of the 
detected vehicle which help to take accurate decisions 
during autonomous navigation. Point cloud representation 
encompasses the original geometric 3D spatial data without 
discretization. Therefore, it is considered the best method 
for spatial understanding related applications such as 
autonomous driving and robotics. However, deep learning in 
point clouds faces several significant challenges [1] such as 
high dimensionality and the unstructured nature of point 
clouds. Deep learning on 3D point clouds [2] is a known task 
in which the main methods used for 3D object detection can 
be divided into two categories:  

1) Region proposal based method  

2) Single-shot methods  

Region Proposal based methods. These methods first 
propose several regions in the point cloud to extract region-
wise features and give labels to those features. They are 
further divided into four types: Multi-view based, 
Segmentation based, Frustum based, and other methods.  

 Multi-View based methods fuse different views coming 
from different sensors such as a front camera, back 
camera, LiDAR device, etc. These methods have high 
accuracy but slow inference speed and less real-time 
efficiency. [3] [4]  

 Segmentation based methods use the pre-existing 
semantic segmentation based methods to eliminate the 
background points and then to cluster the foreground 
points for faster object inference. These methods have 
more precise object recall rates as compared to other 
Multiview based methods and are highly efficient in 
highly occluded environments. [5]  

 Frustum based methods, first use the 2D object 
detection based methods to estimate regions for 
possible objects and then analyse these regions using 3D 
point cloud based segmentation methods. The efficiency 
of this method depends on the efficiency of the 2D object 
detection method. [6]  

Single Shot Methods. These methods directly predict 
class probabilities using a single-stage network.  

 Bird’s Eye View (BEV) based methods work on BEV of 
the point cloud, which is a top-view (2D representation) 
and use Fully Convolutional Networks to detect 
bounding boxes. [7] 

 Discretization based methods first try to apply discrete 
transformations on the point clouds and then use Fully 
Convolutional Networks to predict the bounding boxes. 
[8]  

The study focus was mainly a trade-off between 
accuracy and efficiency. The KITTI [9] benchmark is the 
most used dataset in research. Based on results achieved 
on the KITTI benchmark on various 3D object detection 
algorithms, Region proposal based methods outperform 
single-shot methods by a large margin in KITTI test 3D 
and BEV Benchmarks [2]. Also regarding autonomous 
driving, efficiency is much more important for real-time 
performance. Therefore, the best object detectors are 
using region proposal networks (RPN) [10] [11] or a 
similar grid-based RPN approach [12].  

In this paper, an improved and optimized version of the 
original complex-YOLO [13] is achieved using YOLO v4 
[14]. In addition to the implementation of complex-
YOLO in YOLO V4, the paper also does the comparison of 
various rotated box IoU loss towards mean average 
precision. We can see an overall improvement in 
performance as well as the efficiency with the 
optimization. 

 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

            Volume: 09 Issue: 11 | Nov 2022              www.irjet.net                                                                         p-ISSN: 2395-0072 

 

© 2022, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 717 
 

1.1 Related Work 

Before Chen et al. [3] created a network that takes the 
bird’s eye view and front view of the LIDAR point cloud as 
well as an image as input. It first generates 3D object 
proposals from a bird’s eye view map and projects them to 
three views. A deep fusion network is used to combine 
region-wise features obtained by ROI pooling for each view 
as shown in “Fig. 1”. Then the fused features are used to 
jointly predict object class and perform 3D bounding box 
regression. They proposed a multi-view sensory-fusion 
model for 3D object detection in the road scene that takes 
advantage of both LIDAR point cloud and images by 
generating 3D proposals and projecting them to multiple 
views for feature extraction. A region based fusion network is 
introduced to deeply fuse multi-view information and do 
oriented 3D box regression. The approach significantly 
outperforms existing LIDAR based and image-based methods 
on tasks of 3D localization and 3D detection on the KITTI 
benchmark [9]. Their 2D box results obtained from 3D 
detections also show competitive performance compared 
with the state-of-the-art 2D detection methods. Although this 
method achieves a recall of 99.1%, its speed is too slow for 
real-time applications  

 

Fig. 1. Multi view RPN based 3D Object Detection by Chen 
et al. [3] 

Zhou et al. [15] proposed a model that operates only on 
Lidar data. Concerning that, it is the best-ranked model on 
KITTI for 3D and bird-eye view detections using Lidar data 
only. The basic idea is end-to-end learning that operates on 
each grid cell without using handcrafted features. Despite the 
high accuracy, the model ends up in a low inference time of 
4fps on a TitanX GPU [15]. Simon et al. [13] proposed a model 
that was able to achieve 50 fps on Nvidia Titan X compared to 
other approaches on the KITTI dataset [9]. He used the multi-
view idea (MV3D [3]) for point cloud pre-processing and 
feature extraction. However, he neglected the multi-view 
fusion and generate one single birds’ eye-view RGB-map that 
is based on Lidar only, to ensure efficiency. Euler’s Region 

Proposal Network(E-RPN) method is an additional feature by 
which the author can get the orientation of the objects using 
imaginary and real parts, this helps exact localization of 3D 
objects and accurate class predictions as shown in “Fig. 2”. 
Complex-YOLO is a very efficient model that directly operates 
on Lidar only based BEV RGB-maps to estimate and localize 
accurate 3D multiclass bounding boxes. The mentioned 
approach is processed on the LIDAR data in a single forward 
path which is computationally efficient. 

  

Fig. 2. The point cloud is first preprocessed and converted 
to RGB(height, intensity and density) map. Then the 

complex-YOLO model is performed on the BEV RGB map 
and further optimized with ERPN re-conversion. The lower 

part shows the projection of 3D boxes to image 
space.Adapted from [13] by Simon et al. 

Finally, complete content and organizational editing 
before formatting. Please take note of the following items 
when proofreading spelling and grammar: 

2. MODIFIED COMPLEX-YOLO 

2.1 Complex-YOLO 

The complex-YOLO model by Simon et al, which uses a 
simplified YOLOv2 [16] CNN architecture which has 18 
convolutional and 5 max pool layers, as well as 3 
intermediate layers for feature reorganization respectively, 
extended by a complex angle regression and E-RPN, to detect 
accurate multiclass oriented 3D objects while still operating 
in real-time. The 3D point cloud data, which can cover a very 
large area is confined to a smaller area 80m x 40m to 
generate bird’s eye view RGB map. The R channel refers to 
Height, G channels to Intensity and B channel to Density of 
the point data, the size of the grid map used is 1024x512 
resolution and a constant height of 3m for all the objects. 
Calibration data obtained from the KITTI dataset [9] is used 
to encode the points to the respective grid cell of the RGB 
map. The maximum height, intensity and density of points in 
each grid cell is encoded to that grid cell which results in an 
image that encodes the point cloud information.  
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The input for complex-YOLO architecture is the encoded 
BEV image which can be processed as a normal RGB image 
using yolov2 with the addition of complex angle regression 
by ERPN method, to detect multi-class parts of 3D objects. 
The translation from 2D to 3D is done by a predefined height 
based on each object class. Simon et al. propose an Euler 
Region Proposal (ERP) which considers the 3D objects 
position, class probability, objectiveness and orientation. To 
obtain proper orientation the Simon et al. has modified the 
normal grid search based approach by adding the complex 
angle.  

The YOLO Network “Fig. 3” divides the image into a grid 
(16 X 32) and then, for each grid cell, predicts 75 features. 

 5 boxes per grid cell. YOLO predicts a fixed set of boxes, 5 
per grid cell.  

 For each box, the box dimensions, and angles [Tx, Ty, 
Tw, Tl, Tim, Tre], where Tx, Ty, Tw, Tl are the x, y, width, 
and length of the bounding box. Tim, Tre is the real and 
imaginary parts of the angle of bounding box 
orientation. Hence, 6 parameters per bounding box.  

 1 parameter for objectness probability, i.e.  probability 
of the predicted bounding box containing an object and 
how accurate is the bounding box.  

 3 parameters of probabilities of a bounding box 
belonging to each class (car, pedestrian, cycle).  

 5 additional parameter alpha, Cx, Cy, Pw, Pl used in the 
calculations shown in the E-RPN. So, for each grid cell, 
there are 5 bounding boxes and each bounding box has 
(6 + 1 + 3 + 5) parameters. That makes it 75 parameters 
per grid cell.  

 

Fig. 3. Complex-YOLO architecture [13] by Simon et al. 

The performance evaluation of Complex-YOLO is done with a 
comparatively older network (YOLO v2 [16]) in the paper. 
Still, compared to the latest available networks for bounding 
box detection on 3D point clouds, Complex-YOLO provides a 
good trade-off between accuracy and inference speed.  

2.2 Yolo V4 

YOLO v4 [14] claims to have the state of the art accuracy 
while maintaining a high processing frame rate. In Object 

detection having high accuracy is not the best performance 
metrics anymore. These models should be able to run in low 
cost hardware for a production application. In YOLO v4 [14], 
improvements can be made in the training process to 
increase accuracy. Some improvements have no impact on 

the inference speed and are called Bag of Freebies while 
some improvements impact slightly on the inference speed 
and termed as Bag of Specials. These improvements include 
data augmentation, cost function, soft labelling, increase in 
the receptive field, the use of attention etc. The Yolo  

1) Backbone: YOLO v4 uses Cross stage partial 
connections (CSP) with Darknet-53 as the backbone in 
feature extraction. The CSPDarknet53 [17] model has higher 
accuracy in object detection compared to ResNET based 
designs even though the ResNET has higher classification 
accuracy. But the classification accuracy of CSPDarknet53 
can be improved with Mish [18] and other techniques.  

2) Neck: Every object detector has a backbone in feature 
extraction and a head for object detection. To detect an 
object at different scales, a hierarchical structure is produced 
with head probing feature maps at different spatial 
resolutions. To enrich the feature information fed into the 
head, neighbouring feature maps coming from the bottom up 
or top downstream are either added or concatenated before 
feeding into the head. YOLO v4 uses modified spatial 
pyramid pooling (SPP) “Fig. 4” [19] and modified Path 
Aggregation Network (PAN) [20]  

 

Fig. 4. SPP observed in YOLOv4 

3) Head: This is a network that is in charge of actually 
doing the detection part (classification and regression) of 
bounding boxes. The head used “Fig. 4” in YOLO v4 is the 
same as YOLO v3 [21].  
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Fig. 5. YOLO Head applied at different scales 

2.3 Data Augmentation 

Data augmentation increases the generalization ability of 
the model. To do this we can do photometric distortions like 
changing the brightness, saturation, contrast and noise or we 
can do geometric distortion of an image, like rotating it, 
cropping, etc. These techniques are a clear example of a BoF, 
and they help the detector accuracy. There are various 
techniques of augmenting the images like CutOut [22], 
Random rescale, rotation, DropBlock [23] which randomly 
masks out square regions of input during training 

2.4 Cost Function 

To perform regression on coordinates the traditional 
thing is to apply to mean squared error. But this method is 
inefficient as it doesn’t consider the exact spatial orientation 
of the object and can cause redundancy. To improve this 
Intersection over union (IoU) loss was introduced which 
considers the area of the predicted Bounding Box and the 
ground truth Bounding Box. However, intersection over 
union only works when the predicted bounding boxes 
overlap with the ground truth bounding box. It won’t be 
effective for non-overlapping cases. The idea of IoU was 
improved using Generalized intersection over union (GIoU) 
[24] to maximize the overlap area of the ground truth 
bounding box and the predicted bounding box. It increases 
the size of predicted BBox to overlap the ground truth BBox 
by moving slowly towards the ground truth BBox for non-
overlapping cases. It takes several iterations to achieve this. 
Another bounding box regression method used is Distance 
intersection over union (DIoU) [25] which directly 
minimises the distance between predicted and target boxes 
and converges much faster. 

3. TRAINING & EXPERIMENTS 

The original Complex-YOLO [13] model which used YOLO v2 
is evaluated by improving the model by changing the network 
to newer YOLO v4 using KITTI Dataset [9]. The Velodyne 
point cloud data from KITTI is used as input to the Complex-
YOLO model after preprocessing the data to create the 
required birds-eye view RGB map. The training labels of the 
object dataset is used as input labels. Camera calibration 

matrices of object dataset and left colour images are used for 
creating the visualization of predictions.  

3. 1 Point cloud Prepossessing  

The first step in the training pipeline is to convert the 3D 
lidar point clouds into BEV. Just as in images three channels 
are used in creating the BEV, the RGB map of the point cloud 
is composed of height, intensity and density. First, we will 
decide the area to encode as the lidar point cloud is a large 
spatial data. So, we will set boundaries for point cloud based 
on the front side of the vehicle to the reference mounting 
point of the sensor. We also fix the width and height of the 
RGB map in this case -25m - 25m across the y-axis and 0m to 
50m across the x-axis. We also discretize the feature map 
based on the maximum boundary along the x-axis and height 
of the BEV map to create grids. After separating the search 
space into grids, we can then encode each grid cell for its 
height, intensity, and density based on the number of points 
contained in each grid cell. To encode height and intensity the 
maximum value of points inside that grid cell is used. The 
density of the grid cell is calculated as “(1)” [13] 

 zr = min(1; log(count + 1)= log 64) (1)  

The final result after generating BEV map is shown in “Fig. 6”  

 

Fig. 6. Labeled BEV RGB map 

3. 2 Training  

As mentioned in the Complex-YOLO [13] the momentum 
and decay were set to 0.94 and 0.0005 respectively. The input 
size: 608 x 608 x 3. The training set contains 7481 training 
lidar data that were divided into validation (1481) and 
training set (6000). Adam [26] optimizer is used to train 
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instead of SGD mentioned as per the main paper. An epoch of 
150 is used as the aspect ratio of the image is high but we 
needed an epoch of about 300 as our model does inductive 
learning and for proper generalization from the training data 
to fit any data we needed higher epochs. The learning rate is 
increased gradually based on the epoch. Mish [18] activation 
and batch normalization are also used between the layers.  

3. 3 Evaluation  

For evaluation, the IoU threshold and non-max 
suppression threshold is set at 0.5 for all the 3 classes. 
Average precision is taken as the metric for evaluation.  

3.4 Rotated IoU Losses  

The performance of the model was compared using three 
different bounding box regression algorithms,3d, IoU, GIoU 
[24] and DIoU [25]. Bounding box regression was done using 
the IoU threshold of 0.5 and found the best 3d bounding box 
and then applied ERPN [13] to find the orientation and 
direction of the bounding box. 

 

Fig. 7. Model prediction in KITTI [9] test data. The 
upper part is re projection of the 3D boxes into image 

space 

 

3.5 Results  

The model showed high performance in NVIDIA RTX 2060 
GPU. The orientation of the 3D objects was also successfully 
determined. The comparison of the performance under 
different rotated IoU losses is listed in Table I. Also, in “Fig. 7” 
shows the model’s prediction on test data where the model 
can detect highly occluded objects to the camera image. 

 

4. CONCLUSION 

In this paper an updated and optimized Complex-YOLO for a 
real-time efficient model for 3D object detection using LIDAR 
only data is done using YOLO v4. Different Bag of freebies 
and Bag of specials were added to increase the accuracy with 
no effect or limited effect on inference speed. It’s observable 
that with much less epoch and without proper generalization 
the evaluation results show a good overall average precision 
in all three classes. Also, the comparison of different rotated 
bounding box losses was done and concluded that  

1) IoU loss would not provide any moving gradient for 
nonoverlapping cases and fails when predicted and ground 
truth boxes don’t overlap. Also, the convergence speed of IoU 
loss is slow.  

2) In general, GIoU loss achieves better precision than IoU 
loss. In this case, as the aspect ratio of the input image is high 
GIoU loss gives inaccurate regression and slow inference 
time. It solves the vanishing gradients for nonoverlapping 
cases.  

3) DIoU loss converges much faster than IoU and GIoU loss 
and has improved accuracy compared to others.  

As our model uses a single forward path, The inference 
speed is high compared to other multi fusion models for 3D 
object detection for real-world application using less 
powerful GPUs. This model can be improved further using 
Complete IoU loss (CIoU) for bounding box regression and 
other bag of freebies and bag of specials. 
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