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Abstract- In this article, we analyse the role that 
artificial intelligence (AI) could play, and is playing, to 
combat global climate change. We outline how machine 
learning can be an effective tool for cutting greenhouse 
gas emissions and assisting society with climate change 
adaptation. In partnership with other sectors, we identify 
high impact issues—from smart grids to disaster 
management—where there are current gaps that can be 
filled by machine learning. Although AI has many benefits, 
there are certain drawbacks that prevent it from being 
widely used in climate change research. Recommendations 
are offered to ensure that AI is successfully applied in 
current and future climate change challenges. 

Keywords: Artificial Intelligence; Climate Change; 
Groundwater contamination; Sustainability; Machine 
Learning; Greenhouse emissions. 

1.  INTRODUCTION 

Climate change is one of the most pressing issues of our 
time. Its effects are already being seen on a global scale 
and are expected to increase exponentially, with 
disproportionate effects on the most marginalised 
populations in the world [1]. The intensity and frequency 
of storms, droughts, fires, and flooding have increased 
[2]. Global ecosystems are evolving, affecting human 
reliance on agriculture and natural resources. To combat 
climate change, society as a whole must take action using 
a variety of communities, methods, and instruments [3]. 
The primary and well-known area of computer science 
that works with creating intelligent systems and finding 
solutions to issues similar to the human intelligence 
system is known as artificial intelligence (AI). 
Applications of AI to systems are mostly intended to 
improve computer capabilities that are related to human 
understanding, such as learning, problem solving, 
reasoning, and perception [4]. Healthcare, smart cities 
and transportation, e-commerce, banking, and academics 
are just a few of the industries where AI is finding 
practical applications. Machine learning, deep learning, 
and data analytics are additional divisions of AI. These 
methods are mostly employed in the fourth industrial 
revolution (Industry 4.0), block chain, cloud computing, 
and the internet of things (IoT) [5]. The major reasons 
why AI is flourishing are its special abilities to decide, 

learn, and modify a system based on past data. Due to the 
inclusion of intelligence, flexibility, and intentionality in 
AI-based systems' proposed algorithms, AI's importance 
is continuously growing throughout time. [6]. Artificial 
intelligence (AI), has a lot of potential to speed up plans 
for climate change adaptation and mitigation in fields 
including energy, land use, and disaster response (see 
Key Areas). However, there are now several roadblocks 
and difficulties that prevents AI from reaching its full 
potential in this area. In this research, we aim to provide 
an actionable set of recommendations on what can be 
done to facilitate AI for climate impact. AI may help 
advance and broaden our understanding of climate 
change, and it is becoming an increasingly important 
component of a set of answers that are necessary to 
properly address the climate catastrophe by delivering 
far greener, more sustainable, and effective solutions. 
This paper aims to provide an overview of where 
machine learning can be applied with high impact in the 
fight against climate change, through either effective 
engineering or innovative research. It is important to 
note that AI systems are applicable to almost all 
interdisciplinary fields, and they have played their 
potential role in various applications for optimization, 
classification, regression, and forecasting. Although there 
are numerous uses of AI in advancing sustainability [7]. 
We in this research focus strictly on the intersection of 
AI with climate action, which is already a very broad 
topic. 
 

2. LITERATURE REVIEW 

David Rolnick et al., Tackling Climate Change 
with Machine Learning (2019) 

The paper discusses about the severity of the climate 
change and how machine learning can be used to solve 
the problems related to it to some extent. The paper calls 
on the Machine Learning. The report appeals to the ML 
community to support efforts being made worldwide to 
combat climate change. According to the research, 
improvements to land use, buildings, transportation, and 
electricity systems are sufficient to reduce GHG 
emissions. The research comes to the conclusion that ML 
is an important tool that contributes to the answer 
rather than providing it entirely. ML can speed up 
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scientific advancement and improve system 
performance to increase efficiency, lowering GHG 
emissions. Although this is the case, the paper claims 
that climate-relevant data's nature presents both 
difficulties and opportunity. Data may be confidential or 
contain sensitivity personal data. Where datasets are 
included, they might not be built up with a particular 
goal in mind, unlike standard ML benchmarks that have a 
clear goal. Datasets may contain information drawn from 
a variety of sources, which must be merged using 
advance knowledge. 

 
 
 
 
 
 
 
 
 
 

3. ARTIFICIAL INTELLIGENCE 

Artificial Intelligence is defined as ‘the science and 
engineering of making intelligent machines’ as termed by 
Stanford Professor John McCarthy in the year 1955. 
Artificial Intelligence methods can loosely be divided 
into symbolic approaches, which rely on predefined 
rules and logic to derive results, and statistical 
approaches, which rely on induction from data rather 
than deduction from rules [8]. AI may be characterised 
as a set of multipurpose tools and techniques designed to 
simulate and/or improve upon processes that would 
have seemed intelligent had a human performed them 
[9]. AI systems are applicable to almost all 
interdisciplinary fields and they have played their 
potential role in various applications for optimization, 
classification, regression and forecasting. The recent 
developments and popularity of AI is largely due to its 
sub branch known as Machine Learning. Machine 
Learning is a subset of Artificial Intelligence, which 
provides machines the ability to learn automatically and 
improve from experience without being explicitly 
performed. Thus, in ML algorithm the exact nature of the 
computations performed is not specified in advance, but 
instead is learned by the algorithm by identifying the 
patterns within the data, which can be used to make 
predictions on new data. While Artificial Intelligence has 
already a significant impact in the fight against climate 
change, there currently exists a number of bottlenecks 
and challenges that impede AI from realizing its full 
potential in this matter [10]. Therefore, it is extremely 
important to develop, deploy and govern AI responsibly 
in the context of climate change so that the methods are 
not only effective but also ethically sound.  

3.1 Avoiding and minimising the risks 

When it comes to ethical risks, employing AI in the 
context of climate change is less risky [11] than using AI 
in fields like health and criminal justice, where collecting 
personal information and making judgments that 
directly affect people is the norm. However, it is crucial 
to prevent or reduce any potential ethical issues in order 

to maximise the benefits of AI in the battle against 
climate change. The first set of dangers is related to how 
AI models are created and developed [12]. The majority 
of data-driven approaches to AI are supervised, meaning 
they "learn" to cluster, classify, predict, or decide based 
on new, previously unobserved data by first being 
"trained" on existing labelled data. This raises the 
possibility of unintended bias influencing the 
conclusions reached by an AI system. This could result in 
prejudice and unjust treatment of some people or 
groups. The potential loss of human autonomy brought 
on by some climate-focused AI systems is a second set of 
hazards [13,14]. Large-scale, coordinated effort is 
needed to combat climate change, as well as deliberate 
adjustments in each person's behaviour. Understanding 
individual behaviour, according to [15], "may help signal 
how it can be nudged," such as by reducing people's 
"psychological distance" from the climate problem, 
assisting them in visualising its effects, or inspiring them 
to take environmental action. Since there is much debate 
about how nudging affects individual autonomy [16] and 
whether it interferes with people's ability to make "free 
choices" [17], adopting such a strategy in the context of 
the environment necessitates finding the right balance 
between upholding individual autonomy and enacting 
extensive climate-friendly policies and practises [18]. AI 
applications to combat climate change have the danger 
of violating privacy in addition to fair treatment and 
autonomy. Insofar as AI systems rely on non-personal 
data, such as meteorological and geographic data, to 
comprehend the climate catastrophe, privacy concerns 
are unlikely to be raised. However, developing measures 
to reduce emissions would necessitate data that reflect 
trends in human behaviour, where privacy issues might 
be more pertinent. For instance, the effectiveness of AI 
systems depends on detailed information about energy 
demands, which is frequently available in real time, in 
control systems intended to reduce carbon footprints in 
a variety of contexts, such as energy storage [19], 
industrial heating and cooling [20], and precision 
agriculture [21]. The information gathered can include 
sensitive personal information, putting both an 
individual's and a group's privacy at danger [22].  
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3.2 Nations using Artificial Intelligence to 
combat climate change 

As per the climate update issued by the World 
Meteorological Organization (WMO), there is a 40% 
chance of the annual average global temperature 
temporarily reaching 1.5°C above the pre-industrial 
level in the next couple of years [210]. 

India- In order to combat climate change, India is 
utilising AI and IoT. IoT is in charge of acquiring data 
from sensors, whereas artificial intelligence serves as 
the analytics engine. In addition to improving 
deforestation tracking, building sustainable 
infrastructure, finding new materials, and forecasting 
natural disasters like hurricanes, landslides, and 
earthquakes, these technologies are helpful in 
enabling precision agriculture on a large scale. 

Japan- Since March 11, 2011, both the use of coal-
fired power and GHG emissions have  

increased dramatically in Japan. AI has a significant 
impact on addressing climate change-related 
problems and assisting the nation in achieving new 
economic growth. 

Germany- Manufacturing companies in Germany are 
increasingly using AI innovation to streamline product 
development and creation and see huge potential to 
reduce their energy and resource usage. Expanding 
the use of machine learning in assembly reduces the 
use of natural resources, energy use, and CO2 
emissions. 

Russia- By 2030, Russia has promised to cut 
greenhouse gas emissions by up to 70% from 1990 
levels, presuming that its extensive forests would be 
able to absorb all of the carbon dioxide that can be. 
With the aid of instruments that enhance the creation 
of clean energy, understand carbon footprints, and 
produce new low-carbon materials, Russian 
researchers are doing their best to meet the goal.  

 

 

Table 1: Climate Change Performance Index 2022. 
Source: ccpi.org 

Australia- In an effort to keep up with the rapid shift 
in dangerous conditions, Australia's tropical marine 
research agency is accelerating face recognition 
technologies to analyse coral reef study images.  

United States- The goal of the USA is to eliminate all 
emissions from the economy by 2050.  

3.3 Climate Change Performance Index 

According to Climate change performance Index 2022, 
Denmark is the international role model when it 
comes to combating climate change with the rank of 4. 
With the United Kingdom (7th), India (10th), Germany 
(13th), and France (17th), four G20 countries are among 
the high-performing countries in CCPI 2022.  
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4. CLIMATE CHANGE: THE CATASTROPHE  

Climate change is a phenomenon of the change of 
weather patterns over a period. Human and natural 
influences have a massive role in this phenomenon. 
Accumulation of greenhouse gases is the major reason of 
climate change. Greenhouse gases trap heat to maintain 
the earth’s temperature to sustain life [39]. However, 
humans have been contributing to an increase in the 
atmospheric CO2 concentrations and other green-house 
gases due to the result of increased fossil fuel burning 
and deforestation [26]. The Global average surface 
temperature has risen at an average rate of       F per 
decade since 1901 [24]. The years between 2015 and 
2019 were the warmest years on record while the 
decade 2010-2019 have shown a huge spike in the 
surface temperature making it the warmest decade on 
record. [31,24] 

 

Fig 1: Instrumental temperature data 1880-2020. Source: 
NASA Goddard Institute for Space Studies (GISS) 

C02 is the one of the main important greenhouse gases to 
Earth’s energy balance [31]. The concentration of carbon 
dioxide in Earth’s atmosphere is currently at nearly 4 9 
parts per million (ppm) in 2022 and rising. Scientists 
have found a distinctive isotopic fingerprint in the 
atmosphere proving that such a spike in the 
concentration is due to human activities [32,34] Human 
and industrial activities have dramatically raised the CO2 
content by almost 50% since 1750 [33]. Other 
greenhouse gases like Methane, Nitrous oxide and 
Halocarbons too have risen significantly due to human 
activities, agricultural activities and chemicals. As the 
temperature rises, more evaporation takes place, 
reducing surface water. As a result, soils and vegetation 
become drier. This makes periods with low precipitation 
drier than they would be in cooler conditions. The lack of 
water in regions due to climate change makes it difficult 
for underdeveloped land to provide proper 
vegetation. Local air quality can be affected by climate 
changes. As pollutants are emitted into the air, they can 
alter the climate. The presence of ozone in the 
atmosphere warms the climate, while different 
components of particulate matter (PM) can either warm 
or cool it. 

 

 

Fig 2: Comparison between Global temperature 
anomalies between 1881 and 2021. Source: NASA’s 

Scientific Visualization Studio 

Climate change increases the production of allergenic air 
pollutants, including mold and pollen. Wildfires linked to 
climate change could also significantly reduce air quality. 
The unprecedented rate of global warming is increasing 
ocean temperatures and acidification, which threatens 
marine biodiversity. Historically, monuments like Taj 
Mahal were designed based on the climate of the area 
[25]. The white marble has become yellow due to high 
levels of air pollution. Dust, black carbon, and organic 
carbon are also abundant in Agra, which absorb light 
[36]. In several places of the intricate floral inlay works, 
greenish black patches are visible due to bugs breeding 
in stagnant water and infesting the marble walls [36]. 
The effects of climate change are disrupting weather 
patterns, resulting in extreme weather events, 
unpredictable water availability, and contaminating 
water supplies. Impacts of this kind can have a drastic 
impact on the quantity and quality of water that humans 
need to survive [23]. Due to climate change, heavy 
downpours, droughts, and rising water temperatures are 
more frequent, altering the quality of our drinking water 
and recreational water. These changing conditions are 
ideal for bacteria and viruses to thrive, causing illnesses 
such as legionella, campylobacter, and cholera when in 
contact with humans. In addition, climate change can 
lead to a decrease in precipitation and an increase in 
droughts. As carbon dioxide emissions rise, ocean 
temperatures and acidity increase due to climate change.   
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More potent Tropical Cyclones are probably being 
fuelled by the warming of the ocean's surface caused by 
anthropogenic climate change. Rising sea levels, which 
most certainly significantly contribute to human climate 
change on a global scale, increase the destructive 
capacity of individual tropical cyclones through flooding. 
Furthermore, increased atmospheric moisture brought 
on by human-caused global warming is expected to 
result in higher rates of tropical cyclones precipitation 
[37]. Possible consequences of anthropogenic climate 
change include an increase in the proportion of category 
4 and 5 intense tropical storms. It is predicted that this 
percentage of powerful tropical cyclones will rise even 
further, bringing with it a greater percentage of storms 
with more destructive wind speeds, greater coastal 
flooding, and more intense precipitation rates [37]. 
Warm, humid air serves as the fuel for tropical cyclones. 
There may be more of this fuel available because climate 
change is raising ocean temperatures. Rapidly 
strengthening cyclones, however, are difficult to predict, 
which increases the risk to coastal settlements [38]. 

4.1 Climate change link to groundwater 
contamination 

To begin with, contamination is the process of addition 
of undesirable substances to the groundwater that in 
turn affect the nature [42]. A number of interacting 
forces place the river at risk, including pollution, 
urbanization, overexploitation, and climate change. 
Consequently, the Yamuna ranks among the most 
polluted rivers in India and the world [35]. Water 
deficits have arisen due to climate change's impact on 
India's monsoon cycle, resulting in short-duration, high-
intensity rainstorms, and insufficient rainfall. In addition, 
climate change contributes to serious droughts, quick 
storm bursts, and floods, which cause deaths, property 
damage, and additional pollution of the Yamuna River. In 
addition to the flood damage and pollution, soil erosion 
is exacerbated by the Yamuna's waters absorbing 
atmospheric carbon emissions and acidifying them [35]. 
Five years ago, it was determined that Yamuna pollution 
was a threat to the Taj Mahal, attributing the nesting of 
insects whose excrement was leaving patches on the 
marbles to the production of phosphorous in the river's 
water [25]. According to a recent study titled "Role of air 
pollutant for deterioration of Taj Mahal by identifying 
corrosion products on the surface of metals," hydrogen 
sulphide, which is released from the polluted Yamuna, is 
more corrosive than sulphur dioxide, which is produced 
by industrial pollution and was previously held 
responsible for the deterioration in the Taj's marble [41]. 
The gas responsible for the odour may be causing more 
damage, as hydrogen sulphide (H2S) produced from 
polluted Yamuna water had a stronger corrosive impact 
than sulphur dioxide (SO2) generated by industrial 

pollution in Agra city [36]. Biochemical oxygen demand 
(BOD) is the minimal amount of oxygen needed by the 
river to decompose and manage the organic materials in 
the water, whereas dissolved oxygen (DO) measures the 
existence of the gas and, consequently, life in the water. 5 
mg/l is the permissible level for DO. BOD should ideally 
range between 1 and 3 mg/l. Furthermore, the faecal 
coliform (MPN/100ml) should be in between 500 and 
25    However, when the “Delhi Pollution Control 
Committee” conducted a monthly study on Yamuna in 
July 2022, it was found out that when the river reached 
in Okhla Barrage, the BOD was 70 mg/l; faecal Coliform 
was 630000 MPN or most probable number per 100 ml, 
drastically exceeding the limits. It shows that there are 
higher disease-causing pathogens present in the river 
[40]. Due to a lowering of the groundwater table near or 
below the well's bottom or from low and inadequate 
maintenance, many groundwater wells have become 
contaminated, unprotected, or on the verge of failing. 
These wells won't be able to provide water during 
emergencies and calamities, which will affect millions of 
people's ability to maintain their livelihoods. They either 
will become contaminated by flooding or dry out as a 
result of droughts. The likelihood of water supply 
salinity issues is increased by projected sea level rise and 
excessive groundwater extraction in coastal regions and 
on small islands. Groundwater quality and quantity are 
always intimately correlated with conditions for 
recharging. With addition to being affected by the 
amount of annual precipitation, the latter is also 
influenced by the qualities of the land's surface, the 
vegetation it is covered in, and the properties of the soil. 
Groundwater will be indirectly impacted by global 
warming as part of climate change. The thawing of large 
regions of permafrost at high latitudes will release 
enormous amounts of methane gas and acidic pore 
water. Rivers may be fed more by sporadic rains than by 
glaciers and snow caps on mountains, which once 
produced flow during lengthy seasonal periods. Less 
groundwater will be recharged by such rivers, and such 
streams may even lose water to the ground instead of 
supplying it [43]. Depending on the properties of the 
contaminant, (physical, chemical, biological properties) 
that has been released into the ground, may move 
through the aquifer in the same pattern that ground 
water, although some contaminants may not because 
their physical and chemical properties do not always 
follow ground water flow. It is possible to predict to 
some extent, the transport along the aquifer of those 
contaminants. Ground water pollution can occur from 
on-site sanitation systems, landfill leachate, effluents 
from waste water treatment plants, leaking sewers, 
petrol filling stations or from excessive application of 
chemical fertilizers in agriculture. These pollutants often 
create a plume within the aquifer. Because of the slow 
movement of contaminants, they tend to remain 
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concentrated in the form of a plume that flow alongside 
the ground water [42]. 

 

Fig 3: Contaminant Plume, Source: US Environmental 
Protection Agency 

Naturally occurring pollutants in the ground water 
include microorganisms, dissolved solids and chlorides, 
radionuclides, radon, nitrates and nitrites, heavy metals, 
cadmium, iron, manganese and fluoride are responsible 
for the contamination of ground water [42]. Saltwater 
intrusion moving into the aquifers lead to the 
degradation of ground water including drinking water 
sources [44]. The saltwater rises 40 feet for every 1 foot 
of fresh water depression and forms a cone of accession. 
Saltwater intrusion can affect the quality of water not 
only on well sites but also in underdeveloped portions of 
an aquifer [45]. Another root cause of ground water 
contamination is the effluents from septic tanks. The 
septic systems that are designed improperly or the 
systems that are not maintained on a regular basis can 
contaminate the ground water with bacteria, viruses, 
nitrites, detergents, oils and chemicals. Commercially 
available synthetic septic tank cleaners (such as 1,1,1-
trichloroethane) can contaminate the water supply wells 
and interfere with natural decomposition processes in 
the septic systems [42,46]. Underground storage tanks 
are usually used to store chemicals and petroleum 
products. If the underground storage tanks develop 
cracks or gets corroded due to aging, then the chemicals 
present in the tank can seep through the soil and reach 
the ground water. Improper chemical storage and poor 
quality containers can be a major threat to ground water. 
At the site of accidental slip, the chemicals are often 
diluted with water and then washed into the soil, which 
increases the possibility of ground water contamination 
[47]. 

 

Fig 4: Contamination through on-site petroleum spill, 
Source: Enviro Forensics 

Landfills affect ground water through the formation of 
leachate, which contains calcium chloride, magnesium, 
sulphate, nitrogen, copper, nickel and lead, which makes 
it highly alkaline in nature. It is these alkaline substances 
that constitute to the contamination of ground water by 
altering the state on an aquifer and in turn make the 
ground water unstable for drinking and other primary 
use [48,49]. Sewer pipes carry wastes, which may 
contain organic matter, inorganic salts, heavy metals, 
bacteria, viruses and nitrogen. The fluids may then leak 
from the pipe and seep into the soil and can cause the 
contamination of the ground water [42]. Studies have 
shown that pesticides can reach water bearing aquifers 
below the ground from the applications onto the crop 
fields, which in turn leads to contamination of the 
ground water [50]. Processes such as diffusion, 
dispersion, adsorption and speed of moving water often 
facilitate the movement. But in general, the movement of 
the contaminants within the aquifer is usually slow and 
it is in the form of plume. As the plume spreads, it might 
connect with springs and ground wells, making them 
unsafe for human consumption [51,52,53]. 

5. USING ARTIFICIAL INTELLIGENCE IN 
COMBATING CLIMATE CHANGE 

While AI has a great potential to enable climate 
mitigation strategies, it also comes with a lot of risks and 
pitfalls that are connected with the opportunities. In the 
end, AI is a tool, not an end goal, and we should use it in 
the right way and at the right time. We must first 
critically examine the problems and societal contexts we 
are trying to address. We must pay close attention to the 
problem framing and recognize that AI is not itself a 
solution. Climate change and the environment are 
interconnected through AI on several levels. Quantifying 
these impacts, both positive and negative, relates to how 
it is used [54]. It is important to take into account both 
negative and positive impacts when developing and 
implementing new technologies. Numerous responsible 
AI principles, including fairness and equity, 
accountability, safety, privacy, security, and robustness, 



          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

            Volume: 09 Issue: 11 | Nov 2022              www.irjet.net                                                                         p-ISSN: 2395-0072 

 

© 2022, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 445 
 
 

are applicable across application domains [55,56,57]. 
However, it is remarkable how these principles manifest 
themselves in circumstances that are related to the 
climate. In situations like power grids and industrial 
processes, where mistakes can have serious 
repercussions or where digitalization may introduce 
new cyber security concerns, safety considerations are 

especially crucial. Notably, to ensure that initiatives are 
well-founded and that no new damages or unforeseen 
consequences arise later on in the project lifecycle, these 
concerns should be a core and on-going element of 
scoping, developing, deploying, and managing AI and 
climate projects. 

 

 

Table 2: Climate change solution domains. Source: Tackling Climate Change with Machine Learning 

Key areas where AI can facilitate climate action include –  

 Improving Predictions- AI has the ability to 
forecast the future using historical data. For 
instance, AI can estimate agricultural productivity at 
the minute level as extreme weather threatens food 
security or minute-level forecasts of solar power 
generation to help balance the electrical grid. 
 

 Distilling raw data into actionable information- 
By scaling up the annotations that people could 
make more laboriously, AI can find relevant 
information among vast amounts of unstructured 
data. AI can, for instance, use satellite imagery to 
pinpoint deforestation, identify places at risk of 
coastal flooding, or search through huge databases 

of corporate financial reports for information related 
to climate change. 
 

 Optimizing complex systems- Given a complex 
system with numerous variables that may be 
adjusted simultaneously, AI approaches are good at 
optimising for a particular aim. For instance, AI can 
be used to improve freight transportation timetables 
or lower the energy required to heat and cool a 
building 
 

 Accelerating scientific modelling and discovery- 
By combining known physics-based limits with 
approximations discovered from data, AI can 
frequently speed up the process of scientific 
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discovery itself. For instance, AI can swiftly replicate 
elements of climate and weather models to make 
them more computationally tractable, and it can 
identify promising candidate materials for batteries 
and catalysts to speed up research [58]. 

After outlining the broad roles that AI may play in 
strategies for climate change mitigation we now give a 
high-level overview of some of the specific applications 
that AI can use to have an impact on the climate, sector 
by sector. Many of these applications are already starting 
to be implemented, while the majority are actively being 
developed [59]. 

5.1 Tackling emissions from electricity systems 
using AI 

These days most of the electricity systems are built 
based on data, and many industries are moving towards 
smart grids which are driven by AI and ML [60,61,62]. 
Electricity is one of the main reasons for the emission of 
greenhouse gases [63]. These gases absorb and emit 
radiations within the thermal infrared range, causing the 
greenhouse effect. One of the ways to tackle climate 
change is to source low-carbon electricity. There are 
mainly two types of low-carbon electricity variable low 
carbon electricity and controllable low carbon electricity. 
The variable source depends on external factors of the 
environment. On the other hand, controllable sources 
can be controlled by the people and can be turned on and 
off. These two sources affect the electricity systems 
differently and so they provide distinct opportunities for 
ML techniques. Nowadays electricity is delivered from 
the producers to customers through electric grids or 
interconnected networks, where the power generated 
must be equal to the power consumed at every moment. 
Today it is provided by coal and natural gas plants which 
produces a huge amount of CO2 [64]. ML can reduce 
these emissions using necessary technologies. 

 

Fig 5: Methods to reduce emissions from electricity 
systems using ML, Source: Tackling climate change using 

ML  

The need of electricity must be forecasted beforehand. 
Better short term forecasting can allow the operators to 
reduce their dependency on polluting the plants and 
alongside manage the increasing amount of variable 
sources. Better long term forecasting can enable the 
operators to determine when and where the plants 
should be built. The forecasting must be very accurate 
and this is where ML can help. ML uses methods like 
fuzzy logic and hybrid physical models, and take 
different approaches to measure the quality of certainty 
or uncertainty. At a smaller level, some demands have 
been understood, by clustering households [65,66] or by 
using game theory, optimization, regression or online 
learning [67,68,69].  Most of the previous works on this 
has used domain-agnostic techniques, future ML 
algorithms will need to use domain-specific insights. For 
instance, weather can be a source for the generation of 
electricity and hence ML algorithms forecasting these 
quantities should make conclusions from innovations in 
climate modelling, weather forecasting and in hybrid 
physics-plus-ML modelling techniques [70,71,72]. In a 
power system, engineers determine how much power 
each generator can produce, interpretable ML and 
automated visualization techniques could help engineers 
to understand the forecasting methods and improve the 
scheduling of low carbon. Currently scientists and 
physicists are working to come up with new materials 
that can conserve energy or harness them from variable 
sources. An example of this is solar fuel, this allows to 
capture the solar energy when the sun is shining and can 
store this energy for use later on when the sun is not 
shining. This process can be automated by ML by 
combining the existing heuristics with experimental 
data, physics and logical reasoning to extend the present 
physical knowledge. Generally for improving the 
material science, ML techniques such as supervised 
learning, active learning and models have been used to 
design materials [73,75]. For example: recent studies 
have used tools from AI and physics to propo0se a 
material’s crystal structure with the aim of making solar 
fuels. Some studies have made it possible to make 
lithium-ion batteries using ML [74]. Controllable sources 
can use ML to achieve climate change goals by making 
very few alterations to how electric grids are run. Many 
low carbon technologies are commercially available like 
geothermal, nuclear fission and dam-based hydropower. 
Using satellite imagery and seismic data, [76,91]. ML can 
manage and identify sites that are available for 
geothermal energy. The satellite imagery can also help in 
detecting cracks that can be useful to maintain nuclear 
reactors [91]. This can also be done by high sensor and 
simulation data [92]. Nowadays nuclear reactors 
consume a lot more energy than they produce, [77,78] 
which causes emission of huge amount of CO2 in the 
atmosphere. ML can be a helping hand in such case to 
produce safe and carbon free electricity. Fusion reactors 
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have a large number of tuneable parameters, ML can 
help prioritize which parameter configurations should 
be explored during physical experiments [79]. 
Sometimes the reactors may heat up and may cause 
instabilities, these can be solved using support vector 
machines, adaptive fuzzy logic, decision trees and deep 
learning on the data that that were previously disruptive 
[80,81,82,83,84,85]. ML models would need to use a 
combination of stimulated and experimental data that 
would account for the different physical characteristics, 
data volumes or accuracies for different types of 
reactors. At any place where methane is being used, 
there must be a chance that there would be a leakage of 
methane into the environment. ML can be used in such 
cases in which sensors or satellite data are used to 
proactively suggest pipeline maintenance or to detect 
existing leaks [86,87][93,94,95]. In addition to detection, 
ML can also help to reduce emissions from 
transportation of solid fuels, identify storage plants and 
optimize powerplant parameters to reduce CO2 

emissions. Electricity is transported from factory 
generators to homes, during this transportation, some of 
the energy gets lost due to the heat produced due to 
resistance. ML can help prevent these avoidable losses 
through predictive maintenance or by suggesting 
proactive electricity grid upgrades. This can be done 
using predictive maintenance using LSTMs (long short-
term memory), Bipartite ranking and neural network-
plus-clustering techniques on electric grids [88,89,90]. 

5.2 Transportation and AI  

About 25% of energy-related CO2 emissions are linked to 
the transportation industry. The number of vehicle-miles 
travelled can be decreased with the use of ML by 
reducing the need for long trips, enhancing loading, and 
improving vehicle routing. Ground-based counters 
placed on certain roadways are used traditionally to 
measure traffic. There are several technologies 
employed, including pneumatic tubes and inductive loop 
detectors. Video surveillance systems are sometimes 
used to monitor traffic, particularly when it comes to 
automating the computer vision-based counting of bikes 
and pedestrians. These roads are modelled by looking at 
known traffic patterns for comparable roads because 
counts for most roads are frequently only available over 
short time periods. ML techniques can aid in the input of 
missing data for precise bottom-up estimation of 
greenhouse gas emissions and are also used in car 
emission simulation models [96-108]. Both reducing 
sprawl and improving mobility can help to cut GHG 
emissions. Demand modelling based on machine 
learning can help alleviate climate change by improving 
the operating efficiency of modes that produce high 
amounts of CO2, such as aircraft. ML can assist in 
predicting runway demand and aircraft taxi time in 

order to reduce unnecessary fuel burned in the air and 
on the ground owing to airport congestion 
[109,110,111]. Freight consolidation is the practise of 
clustering shipments together to cut down on journeys 
and, consequently, GHG emissions. ML forecasts demand 
or arrival times, identifies and plans around 
transportation delays or disruptions, and clusters 
providers based on their geographical locations and 
frequent shipping destinations [112]. 

There are numerous prospects for ML to help improve 
mode integration in the passenger and freight industries. 
By lowering rail operations and maintenance costs and 
foreseeing track deterioration, ML can also help to 
improve the performance of low-carbon modes [113, 
114]. By enhancing estimates of bike demand and 
inventory, Ml can assist in resolving the issue of bike 
sharing rebalancing, whereby shared bikes accumulate 
in one area while being in short supply in other 
locations. One of the main causes of climate change is 
commercial aircraft. The toxic chemicals and particles it 
emits, like lead, nitrogen oxides, sulphur oxides, carbon 
dioxide, and others, have a significant impact on our 
climate. Global aviation produced 936 million metric 
tonnes of CO2 in 2020 (pre-Covid). 11,843,000 tonnes of 
CO2 were released into the atmosphere in 2019 by 
Indian scheduled passenger airlines flying to and from 
domestic locations [115]. According to updated research 
published in the journal Atmospheric Environment in 
January 2021, the climate impact of aviation in 2011 was 
3.5% of all anthropogenic warming, and it was 
presumably the same amount in 2018 [116]. In a paper 
titled "Helping Reduce Environmental Impact of Aviation 
with Machine Learning," it is suggested that ML be used 
for two different things: 1) improving winds aloft 
forecast, and 2) determining flight regulations that are 
best for time to destination [117]. It mentions that the 
network of aircraft already in the air is used as surrogate 
sensors that continually update and inform about the 
winds. Systems with machine learning capabilities can 
choose the best flight paths, reduce operating expenses, 
and increase client retention. Numerous route variables, 
including flying effectiveness, air navigation fees, fuel 
consumption, and anticipated congestion level, can be 
examined for this use case [118]. 
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Fig 6: An illustration of the effects of aircraft on the 
climate. Source: Contribution of global aviation to 
anthropogenic climate forcing for 2000 to 2018 

Ships move well over 80% of all global trade in terms of 
volume, and they are the most fuel-efficient form of 
transportation in terms of gCO2/ton-km. international 
shipping, which in 2018 accounted for 2.02% of global 
CO2 emissions, is one aspect of the business that has a 
significant carbon impact [119, 120]. The final report on 
the GHG research from the IMO, which was just released, 
states that the proportion of global CO2 emissions 
attributed to shipping increased from 2.76% in 2012 to 
2.89% in 2018. The overall GHG emissions from shipping 
increased by 9.6% from 977 million tonnes in 2012 to 
1076 million tonnes in 2018. The study forecasts that by 
the year 2050, shipping emissions could accelerate by up 
to 50% over 2018 levels due to the significant predicted 
expansion in transportation demand. The yearly global 
contribution is anticipated to be 13% for sulphur oxides 
(SOx) and 15% for nitrogen oxides due to the high 
sulphur content of the majority of marine fuels (NOx) 
[119,120,121]. Emissions from shipping have a negative 
impact on human health, causing 14 million episodes of 
childhood asthma each year as well as over 400 000 
premature lung cancer and cardiovascular disease 
deaths. According to a report titled "A road toward low-
carbon shipping: Improving Port Operations Planning," 
we can improve port operations planning and scheduling 
using machine learning. In order to improve port 
operations scheduling and planning, the study 
recommends a supplementary system. With the help of 
this technology, planning will be much more reliable, and 
ship speed will be suitably optimised. There are two 
marine sources of data that the system will use - port 
operations data and Automatic Identification System 
(AIS) data [119]. 

5.3 How AI is helping in cities? 

While a quarter of the world's energy-related emissions 
are attributable to buildings, cutting-edge techniques 
combined with simple adjustments might cut emissions 
for already-existing structures by up to 90% [122]. It is 
an established truth that as a result of climate changes, 
more people in areas with frequent lethal heat waves 

would need access to air conditioning. Due to their 
extremely prolonged lifespans, buildings must be both 
newly constructed and retrofitted to be as energy-
efficient as possible. By providing infrastructure, 
economic incentives, or energy standards for buildings, 
urban planning and public policy can significantly 
contribute to the reduction of emissions [123]. ML can 
assist in the selection of methods that are customised for 
certain buildings and can also aid with their 
implementation through sophisticated control systems. 
Urban planners can utilise ML to collect and interpret 
data to help guide policy decisions. Forecasts of energy 
use are typically made using models of a building's 
physical structure, which are basically massive 
thermodynamic simulations. The use of machine 
learning can greatly accelerate these computations, 
either by disregarding physical knowledge entirely, by 
incorporating it into the computation, or by learning to 
approximate the physical model to reduce simulation 
costs [124-129]. Hidden Markov models, sparse coding 
methods for structured prediction, harmonic analysis 
that can identify the unique characteristics of specific 
appliances, and deep neural networks are promising ML 
solutions to this issue [130-133]. Statistical ML provides 
techniques for causal inference to assess the 
accomplishment or failure of energy efficiency 
interventions. Buildings with intelligent control systems 
can reduce their carbon footprint by consuming less 
energy and by providing a way to incorporate lower-
carbon sources into their electricity mix [134]. By 
enabling systems and devices to adjust to usage patterns, 
machine learning in particular can lower energy 
consumption. Additionally, structures can respond to 
grid signals, granting grid operators more flexibility and 
cutting customer costs. Through fault detection, ML can 
automate building diagnostics and maintenance. Deep 
neural networks have the potential to monitor and 
optimise the operation of smart building equipment and 
connection networks, though these systems do waste 
energy on their own. Rebound effects are likely to occur 
in some circumstances [135], resulting in an increase in 
building energy use of typically between 10 and 20% 
[136]. 

From other sorts of available data, ML is uniquely 
capable of estimating energy use and GHG mitigation 
possibilities at scale. Urban building energy models offer 
streamlined data on the energy consumption of all 
structures throughout a city. The location, geometry, and 
numerous other interesting characteristics, including 
building footprint, usage, material, roof type, nearby 
surroundings, etc., are all included in UBEMs. From such 
features, ML can be used to estimate energy use. The 
best buildings for retrofitting can be identified using ML 
algorithms. You might employ basic building attributes 
and nearby environmental variables, both of which could 
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be scaled [137, 138]. Through web scraping and text 
mining, ML can also extract data on climate change-
related urban challenges. Applications for smart cities 
must transfer large amounts of data instantly. Large 
sensor networks need to pre-process a lot of data in 
order to send only the relevant portions rather than all 
the raw data being gathered. This is where machine 
learning comes in [139,140,141]. Smart city initiatives 
have the potential to improve urban sustainability and 
promote low-carbon lifestyles when appropriately 
included into urban design. [142,143,144]. The level of 
urban expansion and the local growth in the vicinity of 
transportation hubs both have an impact on the 
development of effective public transportation, 
according to ML-based study [145,146]. Machine 
learning and artificial intelligence (ML and AI) can help 
coordinate district heating and cooling networks, solar 
power generation, and charging stations for EVs and 
bicycles. They can also be used to improve public lighting 
systems by adjusting light intensity based on previous 
foot traffic patterns [144, 147]. 

5.4 AI tools for industrial emissions 

Upon spending billions of dollars for gathering data, 
[149] by ML researchers, it is found that industrial 
production, logistics and building materials are the 
leading cause of Greenhouse gas emissions [148]. This 
can be reduced by the use of ML by helping to shape 
supply chains perfectly, improve production quality, 
predict machine breakdowns, optimize heating and 
cooling systems and emphasize on using clean electricity 
instead of fossil fuels [150,151,152,153]. 

 

Fig 7: Selected opportunities to use ML to reduce 
greenhouse gas emissions in industries, Source: Tackling 

climate change using ML 

ML can help in by reducing emissions in supply chains by 
predicting the supply and demand of the place where a 
particular item gets transported, identifying low carbon 
products and optimizing transport routes. Some 
methods are explained below. With growing demands of 
goods, producers these days tend to produce excess 

goods, which often lead to wastage. ML may be able to 
mitigate the issue of overproducing goods by improving 
the demand forecasting. [154,155] Nearly one-third of all 
food that is being produced globally is being wasted 
[159]. ML can help reduce food wastage by optimizing 
the delivery routes and forecasting beforehand what 
kind of food is preferred by majority of the customers, 
ML also can help by improving refrigeration systems 
[156] in which the refrigerator could be fitted with 
suitable sensors which could detect foods that are going 
to get spoilt and could be sold or consumed beforehand 
[157].  

Construction in 20th and 21st century involves cement 
and steel as the main materials for any structure. Cement 
produces a lot of heat in the form of CO2. ML can 
minimize this emission by reducing the need of carbon-
intensive materials and redesigning of the construction 
materials. To reduce the use of cement and steel, 
researchers have combined ML with generative design to 
develop structural products that require less raw 
materials and thus reducing the greenhouse gas 
emission. Assuming that there are going to be future 
advances in material sciences, ML research could 
potentially draw upon open databases such as the 
Materials Project [160] and the UCI Machine Learning 
Repository [161] to invent new climate-friendly 
materials [162]. ML can help in redesigning of industrial 
machinery on low-carbon energy instead of coal, oil or 
gas. When given necessary data, the machinery on site 
about all relevant process, ML can improve the efficiency 
of HVAC systems and other industrial control 
mechanisms. To reduce greenhouse gas emissions from 
industrial machinery, ML techniques such as image 
recognition, regression trees and time delay neural 
networks could be used [163,164]. A technique called 
DeepMind is being used to optimize the cooling centres 
of Google’s internal servers by predicting and efficiently 
optimizing the power usage efficiency (PUE), thus 
reducing cooling costs. [151,156]. ML could be used to 
predict the damages in the machinery that is currently in 
use and can also help in better understanding of how to 
best minimize greenhouse gas emissions for specific 
equipment and processes. For example, creating a digital 
twin model of some industrial equipment could enable a 
manufacturer to identify and prevent undesirable 
scenarios, as well as virtually test a new set of code 
before uploading it to the actual factory [158,166]. 

5.5 Protecting Forests using AI 

For millions of years, plants, microorganisms, and other 
living things have been removing CO2 from the 
atmosphere. The majority of this carbon is continuously 
oxidised and recycled through the carbon cycle, and 
some are stored as coal and oil deep underground. 
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However, a sizable portion of this carbon is sequestered 
in the biomass of trees, peat bogs, and soil. Through 
deforestation and unsustainable agriculture, our existing 
economy promotes behaviours that release a significant 
amount of this carbon that has been trapped. In addition 
to these consequences, raising cattle and growing rice 
releases methane, a greenhouse gas that is much more 
potent than CO2 itself. Land use by humans is estimated 
to be responsible for about a quarter of GHG emissions 
[167]. AI can facilitate responsible land uses practices 
and nature-based solutions for carbon sequestration, in 
many ways. Real-time GHG maps could assist us in 
quantifying emissions from agricultural and forestry 
activities and monitoring emissions from other 
industries. Regulations or incentives that could promote 
improved practises could benefit from the guidance 
provided by such information. Standard satellite imaging 
gives RGB images with a much greater resolution which 
could be used in an ML algorithm. 14% of GHG emissions 
are attributable to agriculture. In order to replenish the 
nutrients that farming techniques remove from the soil, 
nitrogen-based fertilisers must be used. Massive 
amounts of energy, or around 2% of the world's total 
energy consumption, are used to synthesise these 
fertilisers [168]. Furthermore, some of this nitrogen is 
transformed into nitrous oxide, a greenhouse gas that is 
nearly 300 times more harmful than carbon dioxide, 
while other nitrogen is kept in the soil or taken up by 
plants. Such industrial agricultural strategies eventually 
focus on improving the uniformity and predictability of 
farms. There is a need for sophisticated instruments that 
would enable farmers to labour at scale while yet 
adjusting to the needs of the land. This strategy is 
frequently referred to as "precision agriculture." 
Precision farming can be made possible by more 
intelligent robotic tools. The University of Sydney is 
developing a robot called RIPPA that can mechanically 
weed, apply targeted pesticides, and suck up bugs [169]. 
It is outfitted with a hyperspectral camera. With solar 
power, it can traverse 5 acres every day and gather 
massive datasets for ongoing development [170]. Similar 
prospects for the creation of novel ML algorithms are 
provided by numerous different robotic systems. Since 
current robots still occasionally get stuck, are only 
optimised for specific types of crops, and rely on ML 
algorithms that may be quite sensitive to changes in the 
environment, there is still a lot of room for progress in 
this area. There are numerous other ways where ML 
might benefit precision agriculture. Intelligent irrigation 
systems can reduce pests that flourish in high moisture 
conditions and save a lot of water. [171]. Additionally, 
ML can be useful for weed, pathogen, and soil sensing 
[172,173,174]. Crop yield forecasting can be aided by 
machine learning [175], and macroeconomic models can 
even help farmers forecast crop demand and choose 
what to plant at the start of the season [176]. The biggest 

source of carbon sequestration on Earth, peatlands (a 
type of wetland ecosystem) occupy only 3% of the 
planet's surface area but store twice as much carbon as 
all of the world's forests combined [177]. However, as 
peat dries up, it decomposes and releases carbon while 
also becoming more flammable [177,178]. To determine 
the peat thickness and evaluate the carbon store of 
tropical peatlands, machine learning (ML) was applied to 
characteristics collected from remote sensing data. 
Advanced machine learning may be able to detect the 
risk of fire and assist create accurate monitoring 
solutions at a reasonable cost. By identifying suitable 
planting sites, keeping track of plant health, evaluating 
weeds, and examining trends, machine learning (ML) can 
be useful in automating large-scale afforestation. Regions 
that are more at risk can be identified using drought 
forecasts [179] and estimates of the water content of the 
tree canopy [180]. Reinforcement learning is utilised in 
[181,182] to forecast the spatial progression of forest 
fire. This aids firemen in determining when to put out a 
fire and when to let it burn [183]. Firefighters can do 
controlled burns and cut specific sections with the use of 
good instruments to assess regions that are more at 
danger and halt the spread of fires. Tools for monitoring 
deforestation can offer useful information for educating 
policymakers and law enforcement in situations where 
deforestation may be taking place illegally. Using remote 
sensing pictures, ML can distinguish between selective 
and clearcutting [184,185,186,187]. Foresters may now 
use ML technologies to decide when to harvest, where to 
fertilise, and what roads to construct. 

5.6 Removal of Carbon Dioxide using AI  

In order to achieve important climate goals, many 
experts contend that global emissions must become net-
negative or that we must remove more CO2 from the 
atmosphere than we emit [188,189]. Although research 
on negative emissions has advanced significantly [190-
194] the CO2 removal industry itself is still in its infancy. 
Simply permitting or encouraging more natural CO2 
uptake by plants is one of the most effective strategies. 
Other plant-based technologies include bioenergy that 
captures carbon dioxide and bio char, which burns 
plants in a way that sequesters carbon dioxide (while 
also producing energy or fertiliser as a valuable by-
product) [190,195,196]. Building facilities to capture CO2 
from industrial operations, ambient air, or even power 
plant exhaust is another strategy. [197]. Although this 
"direct air capture" (DAC) method presents technical 
challenges, it requires little land and, to the best of our 
knowledge, has negligible adverse effects on the 
ecosystem [198]. The fundamental principle of DAC is to 
release CO2 in pure form for sequestration by blowing air 
onto CO2 sorbents, which are either solid or in solution 
and function somewhat like sponges but for gas 
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[190,191]. Although CO2 sorbents are getting better 
[199,200], there are still problems with efficiency and 
long-term deterioration, which could present chances for 
machine learning. To increase sorbent reusability and 
CO2 uptake while limiting the energy needed for CO2 
release, ML could be utilised to speed up materials 
discovery and process engineering workflows [199-202]. 
ML may also assist in the development of components 
that are resistant to corrosion and can sustain high 
temperatures as well as in the optimization of their 
design for air-sorbent contact (which strongly impacts 
efficiency [203] To prevent re-release into the 
atmosphere, CO2 must be sequestered or kept after it has 
been captured, securely and on a large scale. Direct 
injection into geologic formations, such as saline 
aquifers, which are often comparable to oil and gas 
reserves, is the most well-understood method of CO2 
sequestration [204]. Many facets of CO2 sequestration 
may benefit from machine learning. First, ML can assist 
in characterising and identifying potential storage 
places. Using ML for subsurface imaging based on 
unprocessed seismograph traces, oil and gas industries 
have shown encouraging results [205]. These models 
and the data that supports them could probably be 
repurposed to aid with CO2 capture as opposed to 
release. Second, ML can assist in maintaining and 
monitoring operational sequestration sites. Uncertainty 
quantification in a worldwide CO2 storage simulation 
study was recently made successful utilising 
convolutional image-to-image regression algorithms 
[206]. Noisy sensor measurements must be converted 
into conclusions about subsurface CO2 flow and 
remaining injection capacity [207]. Monitoring for CO2 
leaks is also essential [208]. Recently, machine learning 
(ML) techniques have been used to monitor suspected 
CO2 leakage from wells [209] and computer vision 
technologies for emissions detection. 

6. CONCLUSION 

This research concludes that a set of practical 
suggestions can be offered to help AI for climate effect. 
Nearly all inter-disciplinary subjects can benefit from 
using AI systems. In ML algorithms, the precise nature of 
the computations carried out is not stated in advance; 
instead, the algorithm learns by seeing patterns in the 
data that can be used to generate predictions on brand-
new data. This paper emphasises the problems brought 
on by climate change and lists the urgent measures that 
should be implemented. Keeping in mind that AI is only a 
tool and not an end, it can predict the future and assist in 
gathering data to reduce climate change and water 
contamination. However, we must not forget the risks 
associated with the use of AI, hence, it should be used in 
such a way that its effects are maximized as we have 
researched in this paper. While the majority are actively 

being developed, many of these applications are already 
beginning to be used. 
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