
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 12 | Dec 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 133

React state management and side-effects – A Review of Hooks

Krutika Patil1, Sanath Dhananjayamurty Javagal2

1Software Engineer, JP Morgan Chase & Co., Palo Alto, California, USA
2Systems Engineer, Cruise LLC., San Francisco, California, USA

---***---
Abstract - React is a front-end JavaScript library used to
build User Interfaces (UIs) or UI components. ReactJS is a
flexible, declarative, and efficient JavaScript library for
building reusable UI components. We can also build complex
components by nesting one or more simple components. This
concept is the heart of any React application. One of the
outstanding capabilities of React is Hooks. We can efficiently
manage states and execute side effects using React Hooks
without defining a JavaScript class. It is like taking advantage
of the cleanliness and simplicity of a Pure Component and
state and component lifecycle methods. This clarity, efficiency,
and simplicity are possible because Hooks are regular
JavaScript functions! In this paper, we dive deep into React
Hooks and their capabilities.

Key Words: react, react hooks, react state, react side-effects,
JavaScript, frontend-frameworks, web development.

1. INTRODUCTION

React version 16.8 first introduced us to Hooks.

The functional components can access the state and other
React features using React Hooks. React Hooks are functions
using which we can introduce state management and side-
effect logic, among others, in a React component. The React
Hooks do not work with or inside classes; however, React
Hooks let us perform these operations without using classes.

2. React Hooks are revolutionary

Hooks solve many seemingly unconnected roadblocks React
developers face in their journey of building many React
applications. Let us discuss a few of those problems in the
following sections and understand how React Hooks fill
those gaps and make React development more efficient and
fun.

2.1 Reusing stateful logic among components is
hard

React does not provide an out-of-the-box way to "hook"
reusable behavior into components. The react developers
during the early days of React usually preferred techniques
like higher-order components and render props to
achieve such behavior. However, these patterns require us to
restructure our components when we use them, which can
complicate the code and reduce its readability. A typical
React class-based application consists of many wrapper

components, making it challenging to analyze and
troubleshoot. Even though we have Dev Tools to help us in
this process, this brings a more pressing problem to sharp
relief: we need to introduce a better alternative to manage
states in React.

With Hooks, we can reuse the stateful logic without
affecting the hierarchy of the components. The state logic
can also be extracted and tested out independently.

2.2 Complex components are challenging to
maintain

We have often dealt with a situation where we used
components that seemed manageable and small to begin
with but, during the development process, grew into
complex pieces that were difficult to maintain and
understand.

In many cases, splitting the application into smaller
components gets challenging as the stateful logic gets shared
throughout the application. Testing such components is also
tricky, so React is usually combined with a third-party state-
management library but might introduce too much
abstraction making the code reuse difficult.

To mitigate this problem, React Hooks help us break
down a complex component into smaller building blocks
called functions based on relativity rather than lifecycle
methods. We may also use the “useReducer” Hook to
manage the local state of a component.

2.3 Learning classes is a steep learning curve

 The concept of JavaScript classes is significantly different
compared to other languages. Developers are known to
struggle with classes in JavaScript since classes are complex
pieces of logic. The complexity of classes also poses
challenges to code-reusability and organization. Due to these
reasons and the steep learning curve, a lack of enthusiasm is
noticed among React developers to learn and use classes in
React.

3. The State hook

Let us start understanding the useState Hook by comparing
the below code in Figure 1 with an equivalent class example.
Reactivity is a common trait of any user-friendly front-end
application. The application can achieve it by maintaining

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 12 | Dec 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 134

the states and updating or rendering the components
impacted by those states. A component's state needs to be
updated whenever one or more variables in the component
update. It is here that the useState Hook shines. Let us
compare a state implementation in a React class component
and a functional component.

Fig -1: Sample React functional component with useState
Hook

If we have used React classes before, the code below in
Figure 2 should look familiar.

Fig -2: Sample React class component with state

Initially, when the state is declared, it has the value
{clickCount: 0}, with every click action on the button
this.setState() function gets executed, incrementing the
previous value by 1.

Let us consider the same example using a functional
component. As a reminder, Figure 3 depicts an example of a
functional component.

Fig -3: Sample React functional component

Depicted in Figure 4 is another way to declare a
functional component using the ES 5 JavaScript format.

Fig -4: Sample React functional component using ES5
JavaScript format

We have previously known these as stateless
components. These are also known as functional
components since these are functions with stateful logic in
them. Hooks do not work inside classes. However, we can
use them instead of writing classes.

Our example starts by adding a named import of the same
name, useState, from the react library, as depicted below in
Figure 5.

Fig -5: Syntax to import the “useState” Hook

3.1 When do we use a React state Hook

During the early React days, we would convert a
functional component to a React class component if we
needed to add stateful logic. However, we can now instead
use a state hook.

3.2 Introducing stateful logic in components

Continuing with our class example, let us initialize
clickCount to 0 by setting the value of this.state to
{clickCount: 0} in the constructor, as shown in Figure 6.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 12 | Dec 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 135

Fig -6: Declaring state in a React class

The concept of this object is not supported in functional
components of React, making it impossible to read from
this.state. However, we can directly execute the useState
Hook within the functional component, as depicted below in
Figure 7.

Fig -7: Functional component state declaration using
useState

3.3 What are the inputs to the useState Hook?

The useState Hook takes in one argument, the initial
state. The state need not be an object, unlike the classes. If
that solves the purpose, it can be as simple as a string or a
number. Like in our example here, we initialize the state of
the variable as 0, which is a number. The useState Hook can
be called as many times as we need to store different states.
We get two values returned by the React useState Hook that
can be retrieved by array de-structuring, as depicted below
in Figure 8.

Fig -8: useState initial value and return values

In the example above, val is the state variable, and we can
set the value of val using the setter function setVal.

3.4 What values are returned by useState?

The useState Hook returns two values: the existing or the
current value and a setter function that sets or updates the
state. Hence, the syntax depicted in Figure 8 relates directly
to the class example shown in Figure 6 with
this.state.clickCount and this.setState. With this

understanding, the example depicted in Figure 7 should
make sense.

When the React application first renders, the App
component function, the parent to all other components in
the project, gets executed first. The App component then
executes its child component functions, and so on. Hence,
when a particular component variable changes, the change is
not reflected on the DOM since the component function is
not re-executed. It is here that the useState react Hook

shines.

3.5 Detailed Working

Upon declaring a variable or a state using the useState
Hook, React stores and maintains the state in the JavaScript
memory. To set a value to the variable, use the setter
function and pass in the new value. The setter function
indicates to React that the component function needs to be
re-executed, which then executes the useState function. The
re-execution of the state Hook ensures the state variable gets
updated with the latest value since every execution of the
state Hook returns the latest value. As the state updates, it
gets reflected on the DOM courtesy of React's virtual DOM.
Once the component function is re-executed, the updated
value gets reflected on the DOM. The execution of the state
Hook in a component would not affect any other component
except the component where the useState for this variable is
initialized or used. Also, when the component function is re-
executed, it would not reset the variable's value to its initial
value since React keeps track of the first initialization of
useState Hook. React also keeps track of the current or the
latest state between renders and always provides us with the
most current state. So, during every subsequent execution of
the state Hook and except the first execution, the initial value
is ignored.

The useState Hook helps us separate the state on a
per-component basis. This way, useState helps maintain
the states of React components.

4. The Side Effect Hook

We can perform side-effect logic in React functional
components using the useEffect Hook.

4.1 What do side-effects mean in React?

We perform a side-effect when interacting outside our
React component to achieve a particular goal. It is
impractical to predict the outcome of side effects since they
are actions performed with elements in the outside world.
Some common side-effects include calling an API to fetch
data, using browser APIs (window or document directly),
and using unpredictable timer functions (setTimeout and
setInternal).

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 12 | Dec 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 136

4.2 useEffect – Champion of handling side-effects

We should refrain from using the side effects directly in
the React component functions since those can impact the
component's rendering. For example: If we have a logic to
call an API in the React component's function, the API call
will be executed upon every component render. Moreover, if
the side-effect updates a state in the component function, it
triggers a re-render of the component resulting in the side-
effect's re-execution. This sequence of events may trigger an
infinite render loop. The side-effects need to be separated
from React’s rendering logic and must consistently execute
once the component renders, which is what the useEffect
Hook gives us.

4.3 Syntax

useEffect is a function that takes two arguments. The
first argument is a function that executes the side effect logic.
The second argument is an optional list of dependencies on
which the side effect function depends, as depicted below in
Figure 9. This list can be empty if we choose not to list any
dependencies. When the list is empty, the useEffect function
gets executed upon every component render.

Fig -9: useEffect declaration

By listing out the dependencies, we inform React that the
side-effect function must execute ONLY if one or all the
dependencies in the list change, ensuring that the side-
effect logic executes in specific circumstances unique to
the side-effect. When the react component re-renders,
React compares the values of the dependencies from their
previous values and only runs the useEffect function if a
change is detected. The useEffect Hook does not execute in
the case of no change in the values of the list of
dependencies. This way, we may skip running the side-effect
logic in cases where we do not need to.

4.4 Effects needing clean-up

Consider the below useEffect implementation depicted in
Figure 10. There may be instances where our side effects
include subscribing to an event or a timeout. In this case, for
every execution of the useEffect function, we create a new
subscription without clearing the older ones.

Fig -10: useEffect with a subscription to setInterval

The above logic in Figure 10 might lead to memory leaks
and unexpected behavior. It is here that the useEffect clean-
up function comes to the rescue.

We can have the useEffect Hook return a function, which
essentially executes the clean-up logic as depicted below in
Figure 11.

Fig -11: useEffect with clean-up function

The clean-up function executes in the following scenarios:
during every execution of the useEffect function, except the
first component render, and upon the component getting
unmounting from the DOM. In the example above, the clean-
up function does not run during the first render of the
component, but then it runs before every execution of the
useEffect function. Since we save the interval value that was
last created, the clean-up function clears the previously
created interval using clearInterval before re-executing the
useEffect function, which then creates a new interval. Since
the clean-up function runs just before the component is
unmounted from the DOM, the last interval also gets cleared.

5. CONCLUSIONS

 We have attempted to highlight React's state management
and the side-effect hooks. The state management hook
useState helps us to efficiently manage React component
updates and show appropriate feedback to the user by
updating the respective components, which ensures a
seamless user experience. The side-effect hook useEffect
lets us perform side-effect operations without interfering
with React's rendering logic or the performance of the React
component. There are more hooks, for example, useRef,
useContext, and useCallback. We also have an opportunity
to build our hooks in React. These capabilities of React hooks
can be used appropriately per the use case, leading to
efficient and user-friendly front-end applications.

REFERENCES

[1] Bhupati Venkat Sai Indla | Yogeshchandra Puranik
"Review on React JS" Published in International Journal
of Trend in Scientific Research and Development
(ijtsrd), ISSN: 2456-6470, Volume-5 | Issue-4, June 2021,
pp.1137-1139, URL:
https://www.ijtsrd.com/papers/ijtsrd42490.pdf.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 12 | Dec 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 137

[2] Rawat, Prateek, and Archana N. Mahajan. "ReactJS: A
Modern Web Development Framework." International
Journal of Innovative Science and Research Technology
5, no. 11 (2020).

[3] Maratkar, Pratik Sharad, and Pratibha Adkar. "Re act JS-
An Emerging Frontend JavaScript Libr ary." Iconic
Research And Engineering Journal s 4, no. 12 (2021): 99-
102.

[4] https://reactjs.org/

[5] https://www.w3schools.com/react/default.asp/

[6] https://en.wikipedia.org/wiki/React_(JavaScript_library
)#React_hooks

[7] https://www.udemy.com/course/react-the-complete-
guide-incl-redux/learn/lecture/25600136#overview

BIOGRAPHIES

 Ms. Krutika Patil is a Full-Stack
Senior Software Engineer at JP
Morgan Chase & Co. in Palo Alto,
California, USA. Her interests
include web development, Spring
Boot, JavaScript frameworks
(React, Vue and Angular), and
other Computer Science concepts.

 Mr. Sanath Dhananjayamurty
Javagal is a Senior System
Engineer at Cruise LLC in San
Francisco, California, USA. Working
mainly as an Autonomous Vehicle
Network architecture and Systems
Engineer, his interests include
Computer Engineering, AV
Architecture and Design,
Simulation, and Analysis.

