
 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 09 ISSUE: 02 | FEB 2022 WWW.IRJET.NET P-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 640

Unboxing Power Notifications and Vector Icons in ChromeOS

Rajat Khandelwal

Intel Technology India Pvt. Ltd., Bengaluru, India
---***--
Abstract—ChromeOS houses ash tray which contain
battery, volume and other icons. This ash tray keeps on
updating based on the values received by the OS
framework. The battery keeps on updating with many
symbols like low power charger connected, no charger
connected, no battery, battery charging, etc. Similarly, we
have a notification mechanism in ChromeOS which
displays us information about the events happening
currently like a device getting hot plugged in/out or a
battery being removed or a charger being plugged in, etc.
We also get notifications that concern the time remaining
estimate of the battery charging or battery emptying. The
ACPI kernel framework of battery exposes sysfs attributes
which represents multiple types of information. Similarly,
if a mouse/keyboard (external device) gets plugged in, or a
low power charger gets plugged in, or a AC charger gets
plugged in, respective directories are exposed to sysfs
representing each type of device. We also get information
like is the charger dual power role, or the
maximum/minimum power/energy consumption of the
source. This entire information gets conveyed to UI
through DBUS mechanism. There also exists a daemon in
power domain which polls this information and transmits
it to ChromeOS through DBUS signaling.

Keywords—DBUS, Notifications, Battery, Vector
icons, User interface, Power

I. INTRODUCTION

 All the operating systems in general have two
mechanisms to notify the user about the battery and power
capabilities. Those are notifications and tray icons.

In windows platform, we have a rectangular battery
icon which is laid out horizontal. If battery is too low, a red
cross sign appears in front of us and a notification
displaying “Battery low” is presented in UI. Similarly, if the
battery is being charged, a charger icon gets portrayed in
the status bar.

ChromeOS also delivers these features in a very
sophisticated way. There exists a daemon in power domain
which polls the power related information every 30
seconds and notifies the information to ChromeOS via
DBUS signaling. The mechanism of DBUS signaling is
explained later in the paper.

We can find the logs pushed by the power manager class
of power domain in sysfs. These are located in
/var/log/power_manager/powerd.LATEST.

II. THE INITIALIZATION

powerd daemon starts from its Init() function which is
defined in daemon.cc file. This function then creates a
power supply class by calling initialization function of
power supply class. The pictorial representation is given
below.

Fig.1. Initialization of powerd daemon

Daemon initialization starts with CreatePowerSupply
method which is actually defined in main.cc. This function
then calls the initialization function of power supply class.
This is how the power supply class finally gets initialized.

III. INITIALIZATION OF POWER SUPPLY CLASS

There are various variables which get initialized during
the initialization of power supply class. These variables are
listed below:

A. Power supply path: The sysfs directory exposed
which provides battery, charger and connected
devices’ attributes gets initialized to
/sys/class/power_supply.

B. Udev observer: The power supply class gets added
to the udev subsystem as an observer.

C. Poll delay: This represents the amount of time to
wait before updating the power status again after
an update.

D. Initial poll delay: This represents the amount of
time to wait before updating the power status
again after an update if the number of samples is
less than “max current samples”.

E. Battery stabilized after startup delay: This
represents the amount of time to wait after startup
before assuming that the current can be used in
battery time estimates and the charge is accurate.

F. Battery stabilized after line power connected
delay: This represents the amount of time to wait

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 09 ISSUE: 02 | FEB 2022 WWW.IRJET.NET P-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 641

after a power source gets connected before
assuming that the current can be used in battery
time estimates and the charge is accurate.

G. Battery stabilized after line power disconnected
delay: This represents the amount of time to wait
after a power source gets disconnected before
assuming that the current can be used in battery
time estimates and the charge is accurate.

H. Battery stabilized after resume delay: This
represents the amount of time to wait after a
resume event before assuming that the current can
be used in battery time estimates and the charge is
accurate.

I. Full factor: This represents the full factor of the
battery and is used to calculate display battery
percentage.

When power supply class gets initialized, it calls two
important functions – defer battery sampling and schedule
poll.

The complete pictorial representation of the power
supply class initialization is given below:

Fig. 2. Initialization of power supply class

IV. DEFERRING BATTERY SAMPLING

There exists a battery stabilized timestamp which
indicates the exact time battery was stabilized last. It has to
be updated continuously.

The current time is calculated first. Now, the delay given
in the function (here, battery stabilized after startup delay)
is added to the current time and the maximum of the
current battery stabilized timestamp and the addition of the
above two quantities provides the new battery stabilized
timestamp.

This also gets generated as a log in the power manager
logs.

V. SCHEDULING THE POLLING

First, the current time is calculated. Now, we know that
battery current and charge are stabilized at battery
stabilized timestamp. But to poll them, we have to wait
another 50 milliseconds (slack milliseconds) after battery
stabilized timestamp.

If battery stabilized timestamp is greater than the
current time, the next polling will begin in adding slack
milliseconds to the difference of current time and battery
stabilized timestamp.

If battery stabilized timestamp is less than the current
time, that implies, it has not been updated yet. So, if the
current samples are less than max current samples, the
next polling will begin in “initial poll delay” time.

If battery stabilized timestamp is less than the current
time, and the current samples are more than the max
current samples, the next polling will begin in “poll delay”
time.

This information gets logged in the power manager logs
depicting the time after which the polling will start.

Now, the poll timer gets started. It will call a function –
“OnPollTimeout” when the time reaches polling time.

The pictorial representation of the complete polling
mechanism is given below:

Fig. 3. Flow chart from polling up to DBUS transmission

 We can gather from the figure that after updating the
power status, powerd daemon gets notified that the power
status has been updated. This happens in order for the
daemon to log the power status in the power manager logs.

 There is one more point to consider. Since, we had
already discussed that powerd polls periodically, so after
the daemon gets notified, the parameter ‘delay’ again gets
updated and polling again gets scheduled.

 Finally, the DBUS signal carrying a buffer with contents
equal to the current power status gets transmitted to the
ChromeOS to reflect the power status in notification and
ash tray.

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 09 ISSUE: 02 | FEB 2022 WWW.IRJET.NET P-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 642

VI. UPDATING POWER STATUS

The power supply path was already initialized and was
equal to /sys/class/power_supply. Now, the sysfs directory
is iterated to poll battery, charger and devices connected.

If the “scope” parameter of sysfs directory reflects
“Device”, that implies, it is an external peripheral device
and is not relevant to us.

If the “type” parameter of sysfs directory reflects
“Battery”, then the path gets appended in the list of battery
paths.

If the “type” parameter of sysfs directory doesn’t reflect
“Battery”, then its evident that it is a line power directory.
So the line power attributes are now read.

After reading the line power attributes exposed in sysfs,
the battery attributes are read via the battery path
appended before.

Finally, the observed battery charge rate and battery
time estimates get updated based on the attributes
collected by reading from sysfs.

There is one more parameter which gets updated –
“battery less than shutdown threshold”.

We will discuss in the paper how each of these
parameters are calculated and transmitted to UI through
DBUS signaling.

VII. READING LINE POWER DIRECTORY

The following attributes of line power directory get read
through the sysfs.

A. Line status: This attribute gets populates by
reading the “status” field from the sysfs line power
directory.

B. Supports dual role devices: Bidirectional/dual role
ports export “status” field. Thus, this attribute gets
populated by reading the line status. If line status
exists, then it supports dual role else it doesn’t.

C. Type of the connected device: This attribute gets
populated by reading the “type” field from the
sysfs line power directory.

D. Is the connected adapter dual role: If the type of
the connected device is USB, then the “usb_type”
field of the sysfs line power directory gets read. If
this field ends with “PD_DRP”, then the connected
line power source is a dual power source.

E. Is the power supply online: This attribute
indicates that if ‘0’, nothing is connected, unless it
is a dual role power device, in which case a value

of ‘0’ indicates that we are connected to a dual role
power device but not sinking power. This attribute
gets populated by reading the “online” field from
the sysfs line power directory.

F. Manufacturer: This attribute represents the
manufacturer of the line power source and is
populated by reading the “manufacturer” field
from the sysfs line power directory.

G. Model name: This attribute represents the model
name of the line power source and is populated by
reading the “model_name” field from the sysfs line
power directory.

H. Voltage max.: This field represents the max
voltage given by the power source and is
populated by reading the “voltage_max_design”
field from the sysfs line power directory and
multiplying it with a double scale factor of
0.000001.

I. Current max.: This field represents the max
current given by the power source and is
populated by reading the “current_max” field from
the sysfs line power directory and multiplying it
with a double scale factor of 0.000001.

J. Power max.: This attribute represents the max
power supplied by the power source and is
populated by multiplying voltage max by current
max.

K. Voltage now: This attribute represents the current
voltage and is populated by reading “voltage_now”
field from the sysfs line power directory and
multiplying it with a double scale factor of
0.000001.

L. Current now: This attribute represents the current
and is populated by reading “current_now” field
from the sysfs line power directory and
multiplying it with a double scale factor of
0.000001.

M. Is the charger low power USB charger: If the
charger connected is not dual role power, and the
type of charger connected is either USB or
USB_ACA or USB_CDP or USB_DCP, then the power
source connected is a low power charger.

N. Is the charger low power dual role charger: If the
charger connected is a dual role power charger
and the max power is less than USB min AC power,
then the power source connected is a dual role low
power charger.

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 09 ISSUE: 02 | FEB 2022 WWW.IRJET.NET P-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 643

O. Is the charger a high power source: If the above
two conditions don’t hold, then the power source
connected is a high power source.

VIII. READING BATTERY DIRECTORY

The following attributes of battery directory get read
through the sysfs.

A. Is battery present: This attribute represents if a
battery is present and is populated by reading
“present” field from the sysfs battery directory.
This field should not be equal to 0.

B. Status of the battery: This attribute represents
the current status of the battery (charging or
not) and is populated by reading “status” field
from the sysfs battery directory.

C. Manufacturer: This attribute represents
manufacturer of the battery and is populated by
reading “manufacturer” field from the sysfs
battery directory.

D. Model name: This attribute represents model
name of the battery and is populated by reading
“model_name” field from the sysfs battery
directory.

E. Technology: This attribute represents
technology of the battery and is populated by
reading “technology” field from the sysfs
battery directory.

F. Voltage now: This attribute represents current
voltage of the battery and is populated by
reading “voltage_now” field from the sysfs
battery directory and multiplying it with a
double scale factor of 0.000001.

G. Serial number: This attribute represents serial
no of the battery and is populated by reading
“serial_number” field from the sysfs battery
directory.

H. Voltage min design: This attribute represents
voltage min of the battery and is populated by
reading “voltage_min_design” field from the
sysfs battery directory and multiplying it with a
double scale factor of 0.000001.

I. Voltage max design: This attribute represents
voltage max of the battery and is populated by
reading “voltage_max_design” field from the
sysfs battery directory and multiplying it with a
double scale factor of 0.000001.

ACPI has two different battery types: charge battery and
energy battery. Charge battery exposes current now in A,
charge now, charge full and charge full design in Ah. Energy
battery exposes power now in W and energy now, energy
full and energy full design in Wh.

There are four parameters that need to be read: charge,
charge full, charge full design and energy in order to make
calculations.

If the battery is charge battery, charge, charge full and
charge full design are calculated by reading the sysfs power
directory attributes and energy is calculated by multiplying
the charge now with nominal voltage.

If the battery is energy battery, energy, energy full and
energy full design are calculated by reading the sysfs power
attributes. With these, charge, charge full and charge full
design can also be calculated by dividing these parameters
with nominal voltage.

If the sysfs battery directory exposes “power_now” field,
then the current is calculated by reading the power now
and dividing it by voltage.

If the sysfs battery directory exposes “current now”
field, then the current is calculated by reading the field.

IX. UPDATING BATTERY PERCENTAGE AND STATE

Battery percentage is calculated by dividing battery
charge by battery charge full and multiplying the result by
100. This battery percentage is converted into display
battery percentage before providing it to DBUS.

If the line power is on, and the battery charge is more
than or equal to battery charge full multiplied by full factor,
the status of the battery is termed as FULL.

If the line power is on, current is more than 0, and the
battery status reflects charging, then the status of the
battery is termed as CHARGING.

If none of the above conditions hold, status of the
battery is termed as DISCHARGING.

X. BATTERY CHARGE RATE, ESTIMATE AND SHUTDOWN

If the status of the battery is CHARGING, the charge left
to full is calculated by multiplying charge full by full factor
and subtracting battery charge from it. Now, time to full can
be calculated by rounding the product of 3600 and charge
to full and dividing it by signed current.

Signed current is calculated by taking average of the
current samples on line power (if on line power) or average
of the current samples on battery (if on battery).

If the status of the battery is DISCHARGING, the time to
empty is calculated by multiplying battery charge and

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 09 ISSUE: 02 | FEB 2022 WWW.IRJET.NET P-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 644

nominal voltage and dividing it by the product of signed
current and battery voltage and multiplying the result by
3600 and rounding it.

Similarly, battery time to shutdown is also calculated.

The parameter – is battery below shutdown threshold is
also calculated from the above known parameters.

The entire power status collected so far is transmitted
to UI through DBUS signal – PowerSupplyPollSignal.

XI. DBUS

DBUS is a system for IPC communication. On the high
level, DBUS has a libdbus library which allows two
applications to connect to each other to exchange messages
or data. Built on libdbus is the message bus daemon to
which several applications can connect to and is
responsible for routing data from a sender to a receiver.
There are two types of daemon instances – system wide
and per session.

Objects/Object paths:

A. Just like any other programming framework DBUS
abstracts the concept of object in a similar way
with a base class.

B. Libdbus however provides an object path and not a
native object.

C. Object path is similar to a sysfs path.

D. Why are object paths needed? High level bindings
can name the instances defined of native objects
and thus remote applications can refer to them in
an abstract way. Eg.
org/chromium/power_manager.

Methods and signals:

A. Members of the DBUS object.

B. Methods: which can be invoked on an object with
input/output, arguments, etc.

C. Signals - a means of broadcasting a payload from
an object to a respective observer ; in our case:
PowerSupplyPoll signal is sent containing
PowerSupplyProperties proto buffer as the
payload.

Interfaces:

A. Each DBUS object supports one/more interfaces:
basically a named group of methods and signals.

B. Represented by single name spaced string:
org.freeDesktop.Notifications /
org.chromium.PowerManager.

Bus names:

A. DBUS daemon assigns each application a name
whenever it connects to it: unique connection
name.

B. Starts with a ‘:’ character: treat them like IP
addresses.

C. Eg. suppose an object path
com/company/notificationservice with an
interface org.freeDesktop.Notifications could be
given a name of :43-574.

D. So now applications send messages to bus names,
object and interface to execute method calls.

Addresses:

A. In our DBUS case, server is the DBUS daemon as it
listens to all applications which connect to it and
thus are clients.

B. Address: where a server would listen.

C. For system wide messages, libdbus knows a well
defined UNIX socket path: it will be most likely at
/run/dbus/system_bus_socket.

D. For session messages, it reads an environment
variable. [1]

It all comes down to: Address → Name → Bus name →
Object path → Interface → Method.

A pictorial representation of DBUS is given below:

Fig. 4. DBUS Interface

 INTERNATIONAL RESEARCH JOURNAL OF ENGINEERING AND TECHNOLOGY (IRJET) E-ISSN: 2395-0056

 VOLUME: 09 ISSUE: 02 | FEB 2022 WWW.IRJET.NET P-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 645

XII. DBUS SIGNAL RECEIVE INTERFACE

The first function which gets called upon receiving the
DBUS signal – PowerPollSupplySignal is
PowerSupplyPollReceived() which is present in the power
manager client of ash system class.

Then, the observer “power status class” gets called
which in turn calls all its observers and their
OnPowerStatusChanged() function.

There are two observers in the power domain of the
power status class: power notification controller and tray
power. These represent the notification handling and the
icon handling in the ash tray.

The pictorial representation is given below:

Fig. 5. DBUS signal receive interface

XIII. TRAY ICON

Icons in chrome are represented in the form of vector
icons and are drawn with the help of Skia gfx library.

To describe a vector icon, we have to make a .icon file
and put it in one of the appropriate vector_icons directory.
There are a total of 3 such directories:
component/vector_icons, ui/views/vector_icons,
ash/resources/vector_icons.

After adding it in the .icon file, we need to add the
filename in the respective BUILD.gn which in turn creates a
constant to reference the icon.

For eg., unified_menu_battery_bolt.icon will have the
constant name as kUnifiedMenuBatteryBoltIcon.

The location of all the icons concerning battery is
ash/resources/vector_icons. Their names start with
unified_menu_battery*.

To create a vector icon, we simply need to call the
library function: CreateVectorIcon.

We have already seen that the function to be called in
tray power is OnPowerStatusChanged(). This function is
responsible for calculating the battery image information
including the badge which needs to be put on the battery
icon if necessary depending on the current parameters.

The power status carrying all the information about the
type of charger connected and battery status is already
transmitted via DBUS interface. This information is used to
identify which badge needs to be put on the battery icon.
The image of the badge can be found in the location of the
icons concerning battery.

XIV. POWER NOTIFICATION CONTROLLER

The power status concerning the type of charger
connected and the battery transmitted is transmitted via
DBUS interface to the power status class. This information
is used to determine if a notification needs to be presented.

For eg., if a low power USB charger is connected, the
notification stating the same should be presented. Similar
are cases for battery full, battery about to empty, etc.

Notifications in ChromeOS are created using
CreateSystemNotification function.

ACKNOWLEDGMENT

 I would like to acknowledge Intel for providing me this
opportunity to conduct a research on power domain and UI
interface.

REFERENCES

[1] David Wheeler, John Palmieri, Colin Walters, “D-Bus
Tutorial”, version 0.5.0

[2] Torbjorn Semb Dahl, Faruque Sarker, “Flexible
Communication in Multi-robotic Control System using
HEAD: Hybrid Event-Driven Architecture on D-Bus”,
September, 2010

[3] Google, “Chrome OS Power Management”

[4] Karunesh Johri, “D-Bus Tutorial”, December 20, 2016

