
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 02 | Feb 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 377

Limited Budget but Effective End to End MLOps Practices (Machine

Learning Model Operationization) in Generic On-Premises Platform

Indranil Dutta

Principal Consultant and Lead Data Scientist
---***--
Abstract : In this research, would like to bring a mechanism to
implement a typical MLops pipeline for small scale
organization who cannot afford the operational expenditures
to bring the pipeline at Cloudera, Horton works platform or
cloud premises like AWS, GCP or Azure. This paper gives a very
detailed understanding of operationalization of a typical ML
pipelines to adhere all the elements and artifacts without even
using any Docker, Kubernetes or even any API generating
platforms like Flask or FastAPI. Using the combination of a
simple Python/R along with SQL and Shell scripts we can
manage the entire workflow at on premises with a very low-
cost approach. From some angle this mechanism would not be
comparable with the architectures like market ready MLops
platforms like Azure Devops, MLflow, Kubeflow, Apache
Airflow, Databricks with Data factory or Sagemaker Studio
workflow but from conceptual point of view, suffice almost
90% of the requirements with efficient manner.

Key Words: MLops, ML pipeline, On premises, Low Budget
Architecture, ML Engineering

1.INTRODUCTION

In current Data science and Analytics business landscape
MLops is a very prominent and fascinating concept that most
of the organizations are very optimistic to implement as a
part of their AIML initiatives. Different level of organizations
across different lines of business has their own policy to
adopt the MLops to orchestrate the workflow. Large scale
organizations can easily afford expensive licenses or
operational expenses to bring their entire ML pipeline in
customized platforms like Cloudera Manager CDP, CML or
SDX or using the Cloud PaaS or IaaS. There are gamut’s of
state-of-the-art options to consume the developed ML
pipelines and push the same in real production environment
and post deployment monitoring and tracking without many
difficulties of creating self-made architectures and
arrangements.

But if we see the other angles of the industry, there are lot of
small players in the market or start-up organization who are
nurturing their end-to-end journey with custom
architectures and arrangements and without affording the
expensive SOTA platforms for operationalizing their ML
pipelines.

2. BUSINESS CONTEXT

Consider a typical MLops journey and why its required to
implement for a successful business solution. To answer the
points lets understand the context of the following questions?

 Where do we capture the data and does the
single version of data always suffices to meet
the requirement?

 How do we manage the different versions of
codes that all analyst/Data scientist creates for
different iterations?

 How do we capture the Model artifacts for so
many numbers of iterations and a reference
point for future comparison?

 How do we capture the model logs to track the
performance and deployment status?

 What we do if the model performance degrades
after few iterations post deployment?

 How do we monitor the performance of the
model in case there are a few lines up for the
same utilization?

 How do we profile the Model infrastructure for
a seamless production execution based upon the
business requirement?

 How do we capture the test iterations results?

 How many times we can manually changes the
pipelines and execute them once there are
minor/major changes in the code?

 Who will take the initiative to maintain the
release of the pipelines in case there are some
alterations, and the latest version should be in
place?

All these points are very much relevant in today’s AIML
landscape to successfully implement and maintain a solution
in production environment. In the next section onwards we
will see how we can leverage the same requirements with
some hands on custom architectures, its benefits, limitations
and few sample use cases that we can afford the structure

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 02 | Feb 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 378

and some sample cases where the solution is unable to
provide a very elastic scalable support towards the
requirements.

3. ELEMENTS OF A TYPICAL MLOPS PIPELINE

Figure -1: A typical MLOps flow

 A typical MLOps flow comprise the above-mentioned steps
and here are the details.

 Code Management: Code versioning and
maintenance

 Data Management: Versioning, Incremental or Full
Load, Central Location

 Model Building: Log All metrices, Logs and artifacts,
organizing Multiple iterations, Central locations,
Meta data and Data Lineage, Provisioning
Infrastructure

 Model Management: Central Location, Versioning,
Logs, Outputs, Hyper Parameters, plots, Meta Data

 Model Profiling: Memory and processor
requirements.

 Model Deployment: Automated deployment,
provisioning infrastructure, End point versioning,
Traffic Management (scale up and scale out)

 Smoke Test: End Point Health, Positive and
Negative Unit tests

 Data Capture: Real time input and prediction
capture, Central location and time capture

 Governance: Model approve/Rejection,
Notifications

 Model Drift: fluctuation on expected Model outcome

 Data Drift: Unexpected feature behavior change

 Model Update: Keep the model update, retraining,
versioning based on latest dataset and code
integration.

The entire flow is also embedded with three promising
concepts like Continuous Integration (CI), Continuous
Deployment (CD) and Continuous training (CT) pipelines.
These is the standard structure of a desired MLops structure
and now lest explain how these requirements can be served
using a custom code-based architecture and how much we
can achieve without using any state-of-the-art architectures.

4. SOLUTION DESIGN

Figure -2: A generic flow of a AIML solution

Without thinking from a typical MLops cycle, these are the
standard requirements to serve a successful ML operational
pipeline which comprises the following steps:

 Identifying Business Problem

 Feasibility Analysis of the problem for any AIML
solution

 Scope Measurement and estimation

 Data Source exploration and Integration

 Data Preparation and Data engineering

 Exploratory data Analysis and visualization

 Feature Engineering and exploration

 Feature selection and finalization

 Model building, training, and iterations

 Hyper Parameter turning and optimization

 Cross Validation

 Model validation and testing

 Model Finalization

 Model Serialization

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 02 | Feb 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 379

 Model Deployment

 Log Maintenance and Monitoring

 Model drift calculation

 Data drift calculation

 Governance of the entire pipeline and notification

Along with the basic steps also the following needs to be
taken care also

 How the code changes effects on the code repository
and model release (final one)

 Automating the pipeline so it can consume the live
data on each iteration and can complete the require
performance.

 Continuous comparing the model performance and
incase of any significant deviation trigger the
continuous training pipeline to retrain the model
and the fresh one would place for next iteration and
the same process will keep going on.

5. CORE CONCEPT

Now let’s discuss the core operational concept of the
discussed solution in details

Figure -3: A typical Model operationalization workflow

Few of the core components of the architecture and its
application:

Centralized Feature Repository: There is a single data
repository which also comprises multiple Feature marts that
also comprises different work profiles and, in a nutshell,
these are the unique source of incremental load where the
multiple feature marts combined to generate the live data for
the model consumption. There would be a feature of data
drift calculation that we will discuss in later phase. For

future reference also the repository maintains the data
versioning which used for each iteration.

NOTE: The entire flow is describing from a single data
scientist experiment point of view for the simplicity. But
the same structure can handle the same workload for
multiple data scientist as well based on the server space
and capacity.

Model repository: This is a centralized repository of all the
model files that are generated by the data scientists and
based on the version number the required one can be
accessed from the repository. This is also a serve-based
repository and the no of model and its size also depends
upon the server space and capacity.

Source Code repository: All the required codes like data
preparation and transformation SQL codes, Model execution
or scoring codes on Python or R, dependency codes and
config files, Shell scripts that also merge few of the
transformation and model execution codes in a unique flow.
In a nutshell this is a centralized location to cater all the
source codes individually or through a pipeline.

Computation Platform: This is the engine where all the
codes will execute, it could be a UNIX based platform or an
Anaconda environment or a RStudio server. The processing
capacity would be defined and varied based upon the serve
memory and space allotted for the specific job.

Continuous Integration: There would be separate config
files like. YAML which caters all the parameters details and
in the release codes will be parametric and call the config
files during the execution. Data scientist will only make the
changes in the config files and in subsequent execution the
changes will reflect in the base code. Hence in a very manual
way the integration can be taken place.

Continuous Deployment: There would be the shell scripts
which keep executing the pipelines through a CRON
scheduler on periodic basis. Whenever the .YAML files
uploads the changes will automatically updates in the base
code and during the .sh pipeline execution the change will hit
the model files. Hence, we are not configuring any trigger
based continuous deployment, but this is a periodic
deployment to keep the model files updated with respect to
any changes in the base code.

Continuous Training: This concept will also cover
separately in a different section but already taken care in
this architecture.

Model Drift: This is a embedded part of the Continuous
training pipeline and also be explained in a subsequent
section.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 02 | Feb 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 380

Data Drift: This is also an individual topic that we will
discuss in a separate section.

Governance: The logging mechanism will be there to
monitor and notify against all the key performance and
selection/rejection of the specific version of the models and
the final acceptance criteria.

Visualization/Result or Drift showcasing: For this
purpose, we are not using any third-party tools like Tableau
or power BI. In python own capability we can use Dtale or
Sweetviz to create interactive visualization within Jupyter
environment and can drag and drop features to showcase a
presentable outcome.

The flow is here depicting that the core computational
platform will call the latest model files based on the user’s
discretion and the specific code version from the code
repository which is already integrated. Finally, it consumes
the live data block from the unified feature store and then
complete the execution in the platform and generates the
output file through a csv, a log file and the model artifacts
and relevant metrices with .txt file which will store in a
model output repository for future references.

Figure -4: An execution workflow

This is in a nutshell a snapshot of the model execution
workflow which covers the versioning and end to end
integration and entire pipeline would be embedded through
a shell script and the same will scheduled through a cron for
periodic execution based upon the business requirement.

6. MODEL DRIFT & CONTINOUS TRAINING PIPELINE

Figure -5: CT pipeline with model drift calculation

This is a very crucial steps and would like to elaborate step
by step.

1. From the data repository (unique feature store the
live data block would be ready for the current
timestamp – Window T)

2. Using the sql transformation the processed data is
ready for the model consumption, that is also for the
same time window T.

3. Now the shell script will make the execution and
compare the results with the benchmark or with the
result of last execution (T-1) and (T-2). In case there
is any significant changes we call this as model drift.

4. This triggers another pipeline were consuming the
processed data at Time window T a retrainable
python script will execute and generate a new
model version (Time window T).

5. Now compare the KPIs of the model of Time
window T along with the model of Time window (T-
1) and (T-2) and then decide which one would be
productionized at that moment. This type of model
deployment is called a BLUE GREEN deployment
and finally based upon the comparison (A/B
testing) it’s been decided whether we will go for the
blue model or Green one.

6. Then the final model would deploy on server and
the subsequent scoring will happen from these
models itself.

This is how the model drift monitoring will happen along
with the continuous training. This is a continuous iterative
process and whenever there would be a significant drift and
new live data block will hit the pipeline the same exercise
will happen and update the model in the target sever.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 02 | Feb 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 381

7. DATA DRIFT & IMPACT ANALYSIS

Figure -6: Data drift engagement

This is a very interesting solution to identify and visualize the
data drift and subsequent impact analysis.

Here the final training will generate the model file and the list
of important parameters along with degree of importance.

Now once there would be significant drift in the data for
those important parameters then only this will impact the
model performance. In case there are huge drift with some
parameters which is not at all a driver parameter for the
model will not cause much fluctuation in the model
performance.

Now there are generally two different types of parameter –
numeric and categorical. For categorical we will simply check
the distribution of the lagged version and the current version
and interpret the same visually using the Pandas profiling,
SweetViz or Dtale platform.

For the numeric variables’ median is a better statistical
benchmark and we will compare the same for the latest data
with respect to the last version data and plot the drift based
on the distribution median of the numeric values. Now we
will multiple the model importance ratio (normalized one)
along with the drift parameters and calculate the impact.

Thereby its very robust solution to estimate the impact
caused by each parameters drift and the same can be logged
for all iterations for future references.

8. SAMPLE USE CASE FITS INTHIS ARCHITECTURE

There are few sample traditional AIML use case that fits in
this stricture and performs well:

 Customer Churn propensity Model

 Marketing Mix Model

 Customer Lifetime Value

 Credit Scoring Model for Banking

 Upsell/Cross Sell model for marketing

 Demand and sales forecasting Model

Mostly all predictive Models, Regression problems, Time
series forecasting, Optimization problems using batch data
can be fitted in this mechanism properly where
elasticity/scalability/load balancing is not a concern.

9. SAMPLE USE CASE DOESN’T FITS THE ARCHITECTURE

There are few other types of use case that demands real time
results or distributed processing for massive performance
issues or high-end cognitive vision or NLP use cases or use
cases that requires massive scalability/elasticity concern –
cannot be suitable for this type of vanilla MLOps architecture.
Few of the sample use cases are

 Realtime anomaly detection on telemetry data

 Abstractive text summary using Attention model

 SCM optimization at Walmart’s scale

 Image segmentation using mask RCNN

 Document Intelligence using NLP

In those cases, we have no other choice other than using the
so-called state of the art MLOps platforms mostly from all
three major cloud providers like GCP – Kubeflow, Azure
Devops or Databricks MLflow or AWS Sagemaker studio. The
heavy computation pytorch, ONNX or TensorFlow type of
computation doesn’t fit properly with this type of
architecture which actually built to cater the generic machine
learning problems for small scale industry.

10. BENEFITS

 Absolutely low computation cost in terms of
memory, tools, licenses and application platforms.

 Maintenance is easy because the underlying
structure is easy, anyone can easily adopt the same.

 No need for any GPU/TPU type execution.

 Very much transparent and explainable solution, no
hidden state for the entire pipeline.

 Very much use full for the novice data scientist
because the simple Python, R, SQL and shell script
will suffice 95% of the requirements.

 No cost for any third-party visualization.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 02 | Feb 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 382

 Can cater big chunk data using Modin pandas, Dask
or Vaex (Python inbuilt capabilities)

 Use Python inbuilt parallelism using all cores of the
server to distribute the processing capability
without involving any spark or cloud capability.

 Easily integrated with any on-premises databases
like SSMS, Oracle SQL, SQL server, Teradata.

11. LIMITATIONS

There are few limitations as well to use the architecture:

 Not useful for any TensorFlow, Pytorch or complex
NLP task

 Not suitable for highly scalable solutions

 Cannot used for Real time requirements.

 Also, limitation where TBs of data load is involved.

 Cannot useful once data source be in HDFS,
snowflake, RDS, Redshift, Athena, S3, EMR,
BigQuery, BigTable, cosmos DB, Synapse or ADLS
gen2.

12. CONCLUSIONS

Finally, the solutions have a solid background for lot of
small-scale industries or even large scales those uses before
10 years where there was no existence of these state of art
MLops platforms. In some of the cases its still very much
effective and cost savings but in some cases, it has some
limitations. This is a very custom solution and be adjusted
based upon the requirements whereas we cannot adjust the
architecture or workflow of any SOTA platforms for our own
ease. Definitely lot of additional coding involves
implementing the structure for an end-to-end solution, The
main objective of sharing the architecture for those novice
data scientists to test the framework and gain some in-depth
knowledge of how MLOps is actually working rather than
using a drag and Drop DAG platforms which is a grey box or
black box mechanism doesn’t actually explains the core
processing at very ground level. I would really encourage
junior practitioners to test the architectures on your own
hands to get a better flavor of the core MLOps blocks.

REFERENCES

1. MLOps: Continuous delivery and automation pipelines in
machine learning | Google Cloud

2. MLOps Principles (ml-ops.org)

3. Overview of MLOps - KDnuggets

4. Forrester: The future of machine learning is unstoppable
(cloudera.com)

BIOGRAPHIES

 Indranil Dutta is a Principal
consultant and Lead Data scientist
with more than 11 years of rich
experience in Data science and
Artificial Intelligence in various
industries. His core competency is
in delivering scalable Data science
and AI projects in Big data and
Cloud environments.

uthor
Photo

https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning
https://ml-ops.org/content/mlops-principles
https://www.kdnuggets.com/2021/03/overview-mlops.html
https://www.cloudera.com/campaign/forrester-future-of-ml-is-unstoppable.html?utm_source=google&utm_medium=sem&keyplay=ALL&cid=7012H000001eKwwQAE&utm_campaign=FY23_SM_APAC_Google%20Adwords_2022-02-01&utm_adgroup=&utm_term=machine%20learning%20data&matchtype=b&device=c
https://www.cloudera.com/campaign/forrester-future-of-ml-is-unstoppable.html?utm_source=google&utm_medium=sem&keyplay=ALL&cid=7012H000001eKwwQAE&utm_campaign=FY23_SM_APAC_Google%20Adwords_2022-02-01&utm_adgroup=&utm_term=machine%20learning%20data&matchtype=b&device=c

