
                    International Research Journal of Engineering and Technology (IRJET)                 e-ISSN: 2395-0056 

                   Volume: 09 Issue: 02 | Feb 2022                         www.irjet.net                                             p-ISSN: 2395-0072 

 

© 2022, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 377 
 

Limited Budget but Effective End to End MLOps Practices (Machine 

Learning Model Operationization) in Generic On-Premises Platform 

Indranil Dutta 

Principal Consultant and Lead Data Scientist 
---------------------------------------------------------------------***----------------------------------------------------------------------
Abstract : In this research, would like to bring a mechanism to 
implement a typical MLops pipeline for small scale 
organization who cannot afford the operational expenditures 
to bring the pipeline at Cloudera, Horton works platform or 
cloud premises like AWS, GCP or Azure. This paper gives a very 
detailed understanding of operationalization of a typical ML 
pipelines to adhere all the elements and artifacts without even 
using any Docker, Kubernetes or even any API generating 
platforms like Flask or FastAPI. Using the combination of a 
simple Python/R along with SQL and Shell scripts we can 
manage the entire workflow at on premises with a very low-
cost approach. From some angle this mechanism would not be 
comparable with the architectures like market ready MLops 
platforms like Azure Devops, MLflow, Kubeflow, Apache 
Airflow, Databricks with Data factory or Sagemaker Studio 
workflow but from conceptual point of view, suffice almost 
90% of the requirements with efficient manner. 
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1.INTRODUCTION  

In current Data science and Analytics business landscape 
MLops is a very prominent and fascinating concept that most 
of the organizations are very optimistic to implement as a 
part of their AIML initiatives. Different level of organizations 
across different lines of business has their own policy to 
adopt the MLops to orchestrate the workflow. Large scale 
organizations can easily afford expensive licenses or 
operational expenses to bring their entire ML pipeline in 
customized platforms like Cloudera Manager CDP, CML or 
SDX or using the Cloud PaaS or IaaS. There are gamut’s of 
state-of-the-art options to consume the developed ML 
pipelines and push the same in real production environment 
and post deployment monitoring and tracking without many 
difficulties of creating self-made architectures and 
arrangements.  

But if we see the other angles of the industry, there are lot of 
small players in the market or start-up organization who are 
nurturing their end-to-end journey with custom 
architectures and arrangements and without affording the 
expensive SOTA platforms for operationalizing their ML 
pipelines.  

 

2. BUSINESS CONTEXT 

Consider a typical MLops journey and why its required to 
implement for a successful business solution. To answer the 
points lets understand the context of the following questions? 

 Where do we capture the data and does the 
single version of data always suffices to meet 
the requirement? 

 How do we manage the different versions of 
codes that all analyst/Data scientist creates for 
different iterations? 

 How do we capture the Model artifacts for so 
many numbers of iterations and a reference 
point for future comparison? 

 How do we capture the model logs to track the 
performance and deployment status? 

 What we do if the model performance degrades 
after few iterations post deployment? 

 How do we monitor the performance of the 
model in case there are a few lines up for the 
same utilization? 

 How do we profile the Model infrastructure for 
a seamless production execution based upon the 
business requirement? 

 How do we capture the test iterations results? 

 How many times we can manually changes the 
pipelines and execute them once there are 
minor/major changes in the code? 

 Who will take the initiative to maintain the 
release of the pipelines in case there are some 
alterations, and the latest version should be in 
place? 

All these points are very much relevant in today’s AIML 
landscape to successfully implement and maintain a solution 
in production environment. In the next section onwards we 
will see how we can leverage the same requirements with 
some hands on custom architectures, its benefits, limitations 
and few sample use cases that we can afford the structure 
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and some sample cases where the solution is unable to 
provide a very elastic scalable support towards the 
requirements. 

3. ELEMENTS OF A TYPICAL MLOPS PIPELINE 

Figure -1: A typical MLOps flow 

 

    A typical MLOps flow comprise the above-mentioned steps 
and here are the details. 

 Code Management: Code versioning and 
maintenance 

 Data Management: Versioning, Incremental or Full 
Load, Central Location 

 Model Building: Log All metrices, Logs and artifacts, 
organizing Multiple iterations, Central locations, 
Meta data and Data Lineage, Provisioning 
Infrastructure 

 Model Management: Central Location, Versioning, 
Logs, Outputs, Hyper Parameters, plots, Meta Data 

 Model Profiling: Memory and processor 
requirements. 

 Model Deployment: Automated deployment, 
provisioning infrastructure, End point versioning, 
Traffic Management (scale up and scale out) 

 Smoke Test: End Point Health, Positive and 
Negative Unit tests 

 Data Capture: Real time input and prediction 
capture, Central location and time capture 

 Governance: Model approve/Rejection, 
Notifications 

 Model Drift: fluctuation on expected Model outcome 

 Data Drift: Unexpected feature behavior change 

 Model Update: Keep the model update, retraining, 
versioning based on latest dataset and code 
integration. 

The entire flow is also embedded with three promising 
concepts like Continuous Integration (CI), Continuous 
Deployment (CD) and Continuous training (CT) pipelines. 
These is the standard structure of a desired MLops structure 
and now lest explain how these requirements can be served 
using a custom code-based architecture and how much we 
can achieve without using any state-of-the-art architectures. 

4. SOLUTION DESIGN  

Figure -2: A generic flow of a AIML solution 

 

Without thinking from a typical MLops cycle, these are the 
standard requirements to serve a successful ML operational 
pipeline which comprises the following steps: 

 Identifying Business Problem 

 Feasibility Analysis of the problem for any AIML 
solution 

 Scope Measurement and estimation 

 Data Source exploration and Integration 

 Data Preparation and Data engineering 

 Exploratory data Analysis and visualization 

 Feature Engineering and exploration 

 Feature selection and finalization 

 Model building, training, and iterations 

 Hyper Parameter turning and optimization 

 Cross Validation 

 Model validation and testing 

 Model Finalization 

 Model Serialization 
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 Model Deployment 

 Log Maintenance and Monitoring 

 Model drift calculation 

 Data drift calculation 

 Governance of the entire pipeline and notification 

Along with the basic steps also the following needs to be 
taken care also 

 How the code changes effects on the code repository 
and model release (final one) 

 Automating the pipeline so it can consume the live 
data on each iteration and can complete the require 
performance. 

 Continuous comparing the model performance and 
incase of any significant deviation trigger the 
continuous training pipeline to retrain the model 
and the fresh one would place for next iteration and 
the same process will keep going on. 

5. CORE CONCEPT  

Now let’s discuss the core operational concept of the 
discussed solution in details 

Figure -3: A typical Model operationalization workflow 

 

Few of the core components of the architecture and its 
application: 

Centralized Feature Repository: There is a single data 
repository which also comprises multiple Feature marts that 
also comprises different work profiles and, in a nutshell, 
these are the unique source of incremental load where the 
multiple feature marts combined to generate the live data for 
the model consumption. There would be a feature of data 
drift calculation that we will discuss in later phase. For 

future reference also the repository maintains the data 
versioning which used for each iteration. 

NOTE: The entire flow is describing from a single data 
scientist experiment point of view for the simplicity. But 
the same structure can handle the same workload for 
multiple data scientist as well based on the server space 
and capacity. 

Model repository: This is a centralized repository of all the 
model files that are generated by the data scientists and 
based on the version number the required one can be 
accessed from the repository. This is also a serve-based 
repository and the no of model and its size also depends 
upon the server space and capacity. 

Source Code repository: All the required codes like data 
preparation and transformation SQL codes, Model execution 
or scoring codes on Python or R, dependency codes and 
config files, Shell scripts that also merge few of the 
transformation and model execution codes in a unique flow. 
In a nutshell this is a centralized location to cater all the 
source codes individually or through a pipeline. 

Computation Platform: This is the engine where all the 
codes will execute, it could be a UNIX based platform or an 
Anaconda environment or a RStudio server. The processing 
capacity would be defined and varied based upon the serve 
memory and space allotted for the specific job. 

Continuous Integration: There would be separate config 
files like. YAML which caters all the parameters details and 
in the release codes will be parametric and call the config 
files during the execution. Data scientist will only make the 
changes in the config files and in subsequent execution the 
changes will reflect in the base code. Hence in a very manual 
way the integration can be taken place. 

Continuous Deployment: There would be the shell scripts 
which keep executing the pipelines through a CRON 
scheduler on periodic basis. Whenever the .YAML files 
uploads the changes will automatically updates in the base 
code and during the .sh pipeline execution the change will hit 
the model files. Hence, we are not configuring any trigger 
based continuous deployment, but this is a periodic 
deployment to keep the model files updated with respect to 
any changes in the base code. 

Continuous Training: This concept will also cover 
separately in a different section but already taken care in 
this architecture. 

Model Drift: This is a embedded part of the Continuous 
training pipeline and also be explained in a subsequent 
section. 
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Data Drift: This is also an individual topic that we will 
discuss in a separate section. 

Governance: The logging mechanism will be there to 
monitor and notify against all the key performance and 
selection/rejection of the specific version of the models and 
the final acceptance criteria. 

Visualization/Result or Drift showcasing: For this 
purpose, we are not using any third-party tools like Tableau 
or power BI. In python own capability we can use Dtale or 
Sweetviz to create interactive visualization within Jupyter 
environment and can drag and drop features to showcase a 
presentable outcome. 

The flow is here depicting that the core computational 
platform will call the latest model files based on the user’s 
discretion and the specific code version from the code 
repository which is already integrated. Finally, it consumes 
the live data block from the unified feature store and then 
complete the execution in the platform and generates the 
output file through a csv, a log file and the model artifacts 
and relevant metrices with .txt file which will store in a 
model output repository for future references. 

Figure -4: An execution workflow 

 

This is in a nutshell a snapshot of the model execution 
workflow which covers the versioning and end to end 
integration and entire pipeline would be embedded through 
a shell script and the same will scheduled through a cron for 
periodic execution based upon the business requirement. 

 

 

 

 

 

 

6. MODEL DRIFT & CONTINOUS TRAINING PIPELINE 

Figure -5: CT pipeline with model drift calculation 

 

This is a very crucial steps and would like to elaborate step 
by step. 

1. From the data repository (unique feature store the 
live data block would be ready for the current 
timestamp – Window T) 

2. Using the sql transformation the processed data is 
ready for the model consumption, that is also for the 
same time window T. 

3. Now the shell script will make the execution and 
compare the results with the benchmark or with the 
result of last execution (T-1) and (T-2). In case there 
is any significant changes we call this as model drift. 

4. This triggers another pipeline were consuming the 
processed data at Time window T a retrainable 
python script will execute and generate a new 
model version (Time window T). 

5. Now compare the KPIs of the model of Time 
window T along with the model of Time window (T-
1) and (T-2) and then decide which one would be 
productionized at that moment. This type of model 
deployment is called a BLUE GREEN deployment 
and finally based upon the comparison (A/B 
testing) it’s been decided whether we will go for the 
blue model or Green one.  

6. Then the final model would deploy on server and 
the subsequent scoring will happen from these 
models itself.  

This is how the model drift monitoring will happen along 
with the continuous training. This is a continuous iterative 
process and whenever there would be a significant drift and 
new live data block will hit the pipeline the same exercise 
will happen and update the model in the target sever. 
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7. DATA DRIFT & IMPACT ANALYSIS 

Figure -6: Data drift engagement 

 

This is a very interesting solution to identify and visualize the 
data drift and subsequent impact analysis. 

Here the final training will generate the model file and the list 
of important parameters along with degree of importance. 

Now once there would be significant drift in the data for 
those important parameters then only this will impact the 
model performance. In case there are huge drift with some 
parameters which is not at all a driver parameter for the 
model will not cause much fluctuation in the model 
performance. 

Now there are generally two different types of parameter – 
numeric and categorical. For categorical we will simply check 
the distribution of the lagged version and the current version 
and interpret the same visually using the Pandas profiling, 
SweetViz or Dtale platform.  

For the numeric variables’ median is a better statistical 
benchmark and we will compare the same for the latest data 
with respect to the last version data and plot the drift based 
on the distribution median of the numeric values. Now we 
will multiple the model importance ratio (normalized one) 
along with the drift parameters and calculate the impact.  

Thereby its very robust solution to estimate the impact 
caused by each parameters drift and the same can be logged 
for all iterations for future references. 

8. SAMPLE USE CASE FITS INTHIS ARCHITECTURE 

There are few sample traditional AIML use case that fits in 
this stricture and performs well: 

 Customer Churn propensity Model 

 Marketing Mix Model 

 Customer Lifetime Value 

 Credit Scoring Model for Banking 

 Upsell/Cross Sell model for marketing 

 Demand and sales forecasting Model 

Mostly all predictive Models, Regression problems, Time 
series forecasting, Optimization problems using batch data 
can be fitted in this mechanism properly where 
elasticity/scalability/load balancing is not a concern. 

9. SAMPLE USE CASE DOESN’T FITS THE ARCHITECTURE 

There are few other types of use case that demands real time 
results or distributed processing for massive performance 
issues or high-end cognitive vision or NLP use cases or use 
cases that requires massive scalability/elasticity concern – 
cannot be suitable for this type of vanilla MLOps architecture. 
Few of the sample use cases are  

 Realtime anomaly detection on telemetry data 

 Abstractive text summary using Attention model 

 SCM optimization at Walmart’s scale 

 Image segmentation using mask RCNN 

 Document Intelligence using NLP 

In those cases, we have no other choice other than using the 
so-called state of the art MLOps platforms mostly from all 
three major cloud providers like GCP – Kubeflow, Azure 
Devops or Databricks MLflow or AWS Sagemaker studio. The 
heavy computation pytorch, ONNX or TensorFlow type of 
computation doesn’t fit properly with this type of 
architecture which actually built to cater the generic machine 
learning problems for small scale industry. 

10. BENEFITS  

 Absolutely low computation cost in terms of 
memory, tools, licenses and application platforms. 

 Maintenance is easy because the underlying 
structure is easy, anyone can easily adopt the same. 

 No need for any GPU/TPU type execution. 

 Very much transparent and explainable solution, no 
hidden state for the entire pipeline. 

 Very much use full for the novice data scientist 
because the simple Python, R, SQL and shell script 
will suffice 95% of the requirements. 

 No cost for any third-party visualization. 



                    International Research Journal of Engineering and Technology (IRJET)                 e-ISSN: 2395-0056 

                   Volume: 09 Issue: 02 | Feb 2022                         www.irjet.net                                             p-ISSN: 2395-0072 

 

© 2022, IRJET       |       Impact Factor value: 7.529       |       ISO 9001:2008 Certified Journal       |     Page 382 
 

 Can cater big chunk data using Modin pandas, Dask 
or Vaex (Python inbuilt capabilities) 

 Use Python inbuilt parallelism using all cores of the 
server to distribute the processing capability 
without involving any spark or cloud capability. 

 Easily integrated with any on-premises databases 
like SSMS, Oracle SQL, SQL server, Teradata. 

11. LIMITATIONS 

There are few limitations as well to use the architecture: 

 Not useful for any TensorFlow, Pytorch or complex 
NLP task 

 Not suitable for highly scalable solutions 

 Cannot used for Real time requirements. 

 Also, limitation where TBs of data load is involved. 

 Cannot useful once data source be in HDFS, 
snowflake, RDS, Redshift, Athena, S3, EMR, 
BigQuery, BigTable, cosmos DB, Synapse or ADLS 
gen2. 

12. CONCLUSIONS 

Finally, the solutions have a solid background for lot of 
small-scale industries or even large scales those uses before 
10 years where there was no existence of these state of art 
MLops platforms. In some of the cases its still very much 
effective and cost savings but in some cases, it has some 
limitations. This is a very custom solution and be adjusted 
based upon the requirements whereas we cannot adjust the 
architecture or workflow of any SOTA platforms for our own 
ease. Definitely lot of additional coding involves 
implementing the structure for an end-to-end solution, The 
main objective of sharing the architecture for those novice 
data scientists to test the framework and gain some in-depth 
knowledge of how MLOps is actually working rather than 
using a drag and Drop DAG platforms which is a grey box or 
black box mechanism doesn’t actually explains the core 
processing at very ground level. I would really encourage 
junior practitioners to test the architectures on your own 
hands to get a better flavor of the core MLOps blocks. 
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