
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1517

Literature Survey on Web based Recognition of SQL Injection Attacks

Anuradha S Ramchandran1, Nikita Bhyri2, Sree Raksha H R3 , Uthara R Nambiar4

1-4Student, Dept. of Computer Science Engineering, Dayananda Sagar College of Engineering, Karnataka, India
---***--
Abstract - SQL (Structured Query Language) is a query
language that allows users to access and manipulate
information stored in databases. SQL injection attacks
(SQLIA) have become one of the most often employed
attacks by hackers, and the attacking strategies evolve with
the advancement of website technology on a regular basis.

Injection attacks were among the top 10 security
vulnerabilities, according to surveys done by the OWASP
(Open Web Application Security Project) organization in
2013 and 2017. The goal of this survey paper is to provide
readers with a brief review of the various research and
methodologies that have been developed and proposed to
address SQLIA.

Key Words: SQL Injection Detection; Web Security;
Machine Learning; Cyber Security

1. INTRODUCTION

Network and web apps have increasingly become an
integral aspect of our lives. But as technology advances,
apps face greater obstacles. SQL (Structured Query
Language) is a query language that allows users to access
and manipulate information stored in databases. Various
ways for creating and executing SQL statements are
available in languages like PHP and Java, which are used
for web development. SQL statements are typically created
by concatenating strings submitted by visitors via a
website. Because of how diverse SQL is, numerous
encoding methods open the possibility of being infiltrated
by formulating SQL statements. When performing such an
attack, malice-intentioned code segments are inserted into
the request parameters, which gives rise to the server
running unauthorized queries, resulting in information
leakage and database malfunction. For example, the
hacker can gain access to website users' account names,
login passcodes, and other private details, posing a
substantial threat to data security. Methods involve
injecting or changing user input, cookies, and server-side
scripting variables.

Attacking websites by injecting bad SQL queries is now
one of the most frequently used techniques by hackers,
and strategies change with the evolution of web
development. According to surveys done by the OWASP
organisation in 2013 and 2017, such attacks were amongst
the top 10 security vulnerabilities, i.e., among the most
dangerous. As discussed above, a SQL injection attack
simply requires the construction of structured query

statements without the production of extra software. The
structure of SQL language can be changed, and it enables a
variety of coding styles. As a result, several classic
approaches are unable to detect a large variety of these
coding styles. and thus, cannot provide a more effective
defensive effect. Many academics have worked on SQL
injection detection in recent years, although the detection
scope of each project is usually confined to certain
subgroups of SQL injection attacks.

A robust SQL injection detection architecture that has the
ability to recognize all types of SQL injections and is
flexible enough to adapt when an advanced one arises is
essential.

The primary goal of this study is to evaluate recent
research on various algorithms and methods used to
identify SQL Injections in websites.

2. LITERATURE SURVEY

Xin Xie et al. [1] presented a solution to recognize and
catch SQLIA in web applications and large weblogs using
Elastic-Pooling Convolutional Neural Networks (EP-CNN).
This method primarily addresses the issue of detecting
SQLIA that are undetectable by traditional methods. The
use of CNN in areas such as NLP (Natural Language
Processing), image recognition, and computer vision is
thriving, but this may have the disadvantage of
misplacement, which is luckily overcome in the proposed
method because fields of SQLI can exist anywhere in the
query. This framework is shown to detect SQLIA quickly
and accurately. It is also capable of generating a two-
dimensional matrix without distorting or losing any
details, performing well in terms of generalization. It can
detect new attacks and is more difficult to defeat because
of its ability to match irregular characteristics. The
prospect for future work is detecting other cyberattacks.

Jothi K R et al. [2] put forward a system to detect SQL
Injections using Deep Learning and Neural Networks,
including embedding layers and relying on unprocessed
information. This gives the system many advantages, such
as scalability and the capability to detect a wide variety of
such attacks. The model also makes the user’s job easier
by conducting all of the feature extraction and selection
for them. Improvement in the future can be done on
various fronts - to boost easy use and efficacy, the AI
(Artificial Intelligence) approach may be combined with
other SQL injection identification components and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1518

therefore the model also can be improved with better
component extraction. When compared to other
approaches, feature extraction done in the model is less
effective, and training effectiveness can be enhanced. The
results obtained are not as accurate as those produced
when using a CNN-based architecture.

To differentiate between benign and malicious SQL
queries, Benjamin Appiah et al. [3] used the Rabin
Fingerprinting Method and the Aho Corasick Pattern
Matching Algorithm. This system analyses database SQL
queries against a database of signatures obtained from
existing attacks. In the event that fingerprinting is unable
to determine the authenticity of a query, pattern matching
will be used to determine whether the queries contain
attack signatures. The advantages of this system are that it
is capable of identifying a large number of SQL injection
attacks with almost zero impact on efficiency and
detecting attacks on several web applications that are
hosted on the same web server. However, the pattern
matching algorithm used is computationally intensive,
which can be problematic, and the proposed framework
has a trade-off between the time taken to process queries
and the amount of memory space needed. When the size is
reduced, less time is taken, but efficiency is reduced. It also
cannot detect unknown attacks.

To identify and lessen SQLIA, W. H. Rankothge et al. [4]
designed a system that makes use of a single tool:
WebVIM, which is based on parameterized queries and
user input validation. First, the tool analyses the source
code to look for SQLIA vulnerabilities on every page of the
web application. If a page is SQLIA susceptible, then the
security solution is inserted into the source code
automatically. Lastly, the web application is tested against
SQLIA again to verify that it is secure against SQLIA. This
system works better with higher efficiency when
compared to already existing tools, i.e., Nessus and
OpenVAS and has a 100% success rate with mitigation.
The limitation of this system is that it is effective only on
PHP based web applications.

Warradorn Sirisang et al. [5] proposed a system to
analyses SQLI statements using grammatical analysis. The
method has two components: Automated Common
Substructure Extraction, abbreviated as ACSE and Parse
Tree Substructure Matching, abbreviated as PTSM. The
first component captures repeated subparts that exist in
SQL injection statement parse trees. The retrieved parse
tree from ACSE is used by PTSM to identify harmful
sections in input queries and measure similarity between
the input queries and the shared substructure. This
method has high accuracy - more than 90%. Unlike other
similar approaches, this one takes less memory space and
does not require any additional libraries or any
modifications in the obtained source code. The only

limitation is attacks against unknown weaknesses are
undetectable.

D. Das et al. [6] performed an experimental study on how
to detect multiple SQLIA on dynamic SQL queries using the
Edit-Distance Method. The proposed technique differs
from the existing ones in the way it verifies using profile-
based learning. Subroutine calls are used throughout the
proposed run-time verification mechanism for
determining if a dynamic query is innocuous or harmful.
An algorithm is used to calculate the binary-distance value
of the given input test query. This system overcomes
application functionality limitations caused by dynamic
query patterns, can adaptively adjust the threshold and is
able to find SQLIA in multiple website authentication
scenarios, however, entails a rigorous training process and
has a restriction on the number of variables that can be
used in a dynamic SQL query.

Abbas Naderi-Afooshteh et al. [7] proposed a system
called ‘Joza’, which utilizes the Hybrid Taint Inference
method to defeat SQLIA in web applications. Using only
positive or negative taint inference (TI) poses security
risks, which are overcome by using a hybrid approach. The
proposed system has two main aspects: positive and
negative TI evaluation. Before being allowed to go to the
DBMS (Database Management System), instructions meant
for it are diverted to each unit. This system safeguards
against a large variety of SQL injection attacks with high
effectiveness, has no false positives, has minimal
overhead, and is simple to implement. The limitation of
this system is that it works only with PHP-based
applications.

Yong Fang et al. [8] put forward an approach to detect SQL
Injection behavior using token word vectors from queries
and a long short-term neural network, incorporated by a
software called ‘WOVSQLI’. The advantages of this tool are
that it is featureless, has high values of accuracy, recall and
precision. Performs better than a similar algorithm that
utilizes random forest and can effectively detect SQLIA. In
future research, new data can be used to improve the
performance, which is impacted by the size and variety of
the dataset used.

B.Hanmanthu et al. [9] recommended a model that uses a
3-tier architecture system along with decision tree
classification to detect and protect against SQLIA. This
architecture consists of query pre-processing, result
analysis and response. Pre-processing of the obtained SQL
queries is done to ensure more accuracy when they are
used as input to the decision tree algorithm. Classified
results from this are sent for analysis and response. When
contrasted with a few similar models, the model
outperforms them with time and accuracy metrics, but
cannot detect all types of attacks, or unknown
vulnerabilities.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1519

Chen Ping [10] proposed an approach to detect second-
order SQLIA using Instruction Set Randomization. In this
proposed approach, new SQL instruction sets are
dynamically generated by randomizing known arguments
in websites, and a proxy server that assesses each query
for standard keywords to detect harmful activity is added.
The proxy server also derandomizes queries that do not
show any behavior of SQLIA. Second-order SQL injection
attacks are notoriously harder to detect than first-order
injections and this approach detects these with high
accuracy, high efficiency, and low processing costs. It is
easy to deploy and does not depend on one database or
server platform.

Mohammad Qbea'h et al. [11] proposed a dynamic
approach to recognize and avert SQL Injection Attacks that
uses finite automata and regular expressions (RE) to
formalise alternate encoding attacks and tautology. To
check user input and recognize and prevent SQLIA,
expressions are introduced into the code. The proposed
RE and programs are provided in ASP.net for easy use by
developers, without them restructuring or rewriting their
own. Other databases, such as Oracle, and programming
languages other than ASP.net, such as JAVA and PHP, can
be used with the proposed theory. One huge advantage of
this approach is that it covers characters from a variety of
languages, including English, Arabic, Japanese, and others,
which is not done by other approaches. The limitation is
that not all SQLIA can be characterized and formalized,
and the approach ignores case sensitivity for keywords
and operators, which should not be done practically.

Yaohui Wang et al. [12] put forward the method of
dynamic and static analysis for detecting SQL vulnerability
attacks. This method is based on injection analysis
technologies and this study provides a SQL vulnerability
detection approach. This method investigates the one-time
injection in terms of how data flows and program behavior
using a combination of dynamic and static analysis tools.
SQL vulnerability dedication set of criteria, which is
primarily based on lexical function evaluation, is then
applied. Finally, this work integrates alias evaluation
technology, conduct version, and SQL that is largely
dependent on lexical function evaluation to develop and
create a prototype device for SQL vulnerability detection.
When comparing detection technology, it is clear that
static detection plays the most important function in
detection technology. Among other advantages, this
approach offers code coverage at a high rate, fast speeds,
and fins vulnerabilities at a high rate. Excessive false
positive and negative rates, low precision, and high code
reliance are some of the disadvantages.

Li Qian et al. [13] did research on attack and aversion
technology of SQL injection. A defensive model has been
designed to prevent them, checks not just input form data,
but also recognizes information from the browser URL

bar, which is very valuable for sensitive character
identification. To start, the server checks the IP address's
authenticity. The user is denied access to the login server
if input values are illegal. Secondly, input data is validated
on the server by looking at the format, range, length, and
type. If the input string matches the SQL prevention rule,
then the user is allowed to access the page. Finally, the
server verifies the permissions of the user. The system
disables the user and sends a message to the system
administrator if the number of users exceeds the access
permissions. When all verifications are invalid, the server
logs the injection attack. This paper describes the
characteristics of a SQL injection attack and, as a result,
the strategies for preventing it. SQL injection threats may
be avoided by using input validation and type-safe SQL
parameter processes. On this structure, a defense model is
built, which identifies assaults by contrasting original
input length to the obtained ones. The method may be
used to secure online applications. Such assaults use
software flaws to enter destination databases through the
user's client. Furthermore, vulnerabilities in web
component input validation can be exploited for a chance
at attacking.

Taiki Oosawa et al. [14] provided a technique for
calculating the zeta distribution parameter and provided a
method for detecting SQL injection attacks. They also put
their proposed methodology to the test, demonstrating
that the attack data detection method works well by
comparing it to certain common approaches. By the
formula, the zeta distribution closely approximates the
distribution of the symbols. According to the results of the
detection experiment, the suggested approach identified
attack data rather effectively. In the case of normal data,
the SVM approach was determined to be superior to our
suggested method. It is required to work on including a
high number of symbols as well as taking into account the
Gaussian kernel parameter's property.

Meharaj Begum A et al. [15] came up with a pattern-based
neural network model for SQLIA. The purpose of this
research was to use existing parsing and tagging
techniques to extract SQL injection patterns using the
Pattern-based CNN model. Multi-layer Perceptron is used
to train and model pattern-based tags, which performs
substantially better than previous algorithms in query
categorization, with an accuracy of 94.4 percent. This
model deals with inquiry patterns and conquers the
shortcomings of similar current systems that compare
query strings to basic strings or consider aspects like
keyword count and punctuation count. It successfully
classifies and detects injections. The signature (pattern) of
the expressions along with predicates of a SQL query is an
important aspect of this research. The main problem with
this study is the dataset size, and it only uses SQLIA to find
tautologies. This research is not being expanded to include
additional types of injections.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1520

Nagasundari et al. [16] proposed SQLIA detection using
ResNet (Residual Networks). The SQL injection detection
system based on ResNet learns and identifies SQL
injection attacks on its own. This approach is used to train
data that has been processed. The UI (User Interface) is
designed for a test case in which a user is expected to
input either a malicious or a legitimate query. The trained
model is capable of distinguishing between fake and
authentic input requests with ease. ResNet has been
shown in tests to be capable of identifying a wide range of
SQLIA. Traditional detection approaches are slow to
identify different types of SQLIA, resulting in a greater rate
of false positives and false negatives. The proposed ResNet
model is designed and developed in such a way that it
automatically detects all forms of SQLIAs. The dataset is
subjected to a large number of test cases, which enhances
accuracy. A downside is that man-in-the-middle attacks
are a vulnerability while training and testing the model.

Musaab Hasan et al. [17] proposed a machine learning
approach to find SQLIA, a machine learning-based
heuristic technique that uses a dataset of 616 SQL
statements to train and test 23 different ML (Machine
Learning) classifiers. Based on how accurately
identification is done, the best five classifiers are picked,
and a GUI (Graphic User Interface) program is created
employing these five classifiers. The proposed approach is
then put to the test, with the results indicating that it is
capable of accurately identifying SQL injection assaults
(93.8 per cent). The proposed approach has been carefully
tested, and the results show that Ensemble Boosted and
Bagged Trees classifiers are the most precise. Both have a
higher than 0.9 area under the receiver operating
characteristic curves, suggesting that the system is
working well. The problem is that the dataset necessitates
the examination of more non-injected SQL statements, as
well as the experimentation and exploration of additional
features.

Based on behavior and response analysis, Zeli Xiao et al.
[18] proposed a method for detecting SQL injection. Their
strategy is focused on the study of attack behavior as well
as the reaction and status of the web application under
various assaults. This solution corrects various flaws in
the present SQL detection system (rule matching is
missing, user input variety leads to false positives, and
calculation is time-consuming). When a web application is
discovered to be under assault, it may quickly stop
attackers from continuing their attack by putting the user
on a blacklist and denying them access to online apps. The
problem here is that the system SQL execution has an
uncertainty component, the invariant extraction is not
complete, and the invariant error, as well as the pattern
matching attack, result in false alarms and omissions.

Pan Lina et al. [19] proposed the method of GreenSQL
pattern input whitelist for SQLIA Detection. The GreenSQL
pattern input whitelist approach optimizes the input
model by creating a patterned input and optimized
whitelist based on an assessment of SQL injection attack
instructions' characteristics and patterns. The efficacy of
input is enhanced when compared to the typical random
input command, GreenSQL's learning efficiency can be
enhanced, and its IPS (Intrusion Prevention System)
intercepting samples may be increased, which elevates its
use. This is the quickest mode since we only compute risk
for new requests, which don't happen very often. As a
result, it is ineffective for often occurring questions.

Solomon Ogbomon Uwagbole et al. [20] recommended
detecting and averting SQLIA by using ML to predict and
perform analytics. It uses a Two-Class Support Vector
Machine. It also provides a framework for detecting and
preventing SQLIA on the big data internet. In big data, the
method described here is useful as it can not only detect
but also prevent attacks and has 98% accuracy. However,
it is not a multiclass classifier, hence, cannot group
different types of SQL injection attacks.

Angshuman Jana et al. [21] proposed an Input-based
Analysis Approach. The purpose is to determine harmful
user inputs, which are often made up of special symbols,
keywords, or a combination of both. This model can
automatically determine and avert threats. The proposed
methodology can be used to create an input checker that
can automatically detect and prevent SQLIA. There is also
an input verifier to detect fraudulent inputs. Database
application programs can also be safeguarded.

Pan Lina et al. [22] put forward the GreenSQL Pattern
Input Whitelist. A matrix is used to determine the level of
risk associated with SQL operations that are launched
from the outside. If the analysis score of a SQL command
exceeds a certain threshold, the command will be blocked
if not already done so; else, it will be pushed to the
background left for SQL command processes. In
comparison to the traditional input command, the input
usefulness is enhanced. However, GreenSQL's learning
efficiency has the potential to be improved, which will help
to promote its use.

Ao Luo et al. [23] proposed A CNN-based Approach. In this
paper, traffic obtained by the client is used as the focus of
the study. The payload of SQL injection attacks is carved
out of data collecting and sanitization of traffic. After
building the CNN network model, this can be used as input
data and indicate if threats are present. Practical
demonstrations reveal that this strategy has some
advantages over the rule-matching-based method. The
effectiveness and usability of the CNN-based SQL injection
recognition system have also been established. The
disadvantages are that the CNN model needs to include

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1521

more kinds of intrusion scanning capabilities and the
dataset can be expanded.

Neel Gandhi et al. [24] put forward a CNN-BiLSTM based
approach. For identifying SQL injection attacks, the study
proposes a machine learning algorithm founded on a
hybrid CNN-Bi-LSTM, trained with a sizable input query
set, followed by pre-processing such as tokenization and
feature extraction, ML model training, and validation on
multiple evaluation matrices. It outperforms other
machine learning approaches in terms of accuracy and
speed. Better approaches could be employed to tokenize,
extract characteristics, and stem the input.

Krit Kamtuo et al. [25] put forward a method to prevent
SQLIA in website development using Machine Learning. As
it is the major core for SQL injection prediction, this study
presents a solution centered on the machine learning and
compiler platform. 4 types of machine learning-based
models were employed to train 1,100 instances of
susceptible SQL statements, out of which Decision Tree
proves to be the best model in terms of prediction
efficiency and processing time, as per the findings. Future
research will focus on the creation of a compiler platform
based on an IDE that can analyses query syntax and
identify SQLIA in code before the site has been launched.

Inyong Lee et al. [26] proposed a solution based on
eliminating SQL query attribute values. This study
presents an effective yet simple SQL injection attack
detection mechanism. When parameters are provided, the
method contrasts the value of a SQL query attribute of web
pages against a pre-set one and eliminates it. Static and
dynamic analyses are integrated into this strategy. This
method compares the SQL queries examined in advance to
the SQL queries that have their attribute values removed
at runtime. For analysis, the suggested approach merely
eliminates attribute values from SQL queries, making it
independent of the DBMS. The proposed solution does not
require complex operations like parse trees or specific
libraries. It can be utilized not only with online apps but
also with other database-connected applications, to profile
and list queries, and modularize detection software. More
research is needed on this issue and also for additional
website attacks like XSS (Cross-site Scripting), using the
recommended method and classifier techniques.

Rajashree A. Katole et al. [27] proposed an approach to
detect SQLIA that involved eliminating parameter values
of the given input queries. Here, two methods of query
processing and parameter elimination are coupled to
create a solution that uses parameters to distinguish
between unaltered sources and harmful altered queries.
The advantages of this approach are that it does not
require any source code modification at all and both static
and dynamic analyses are performed on SQL queries.

However, this technique is time-consuming and further
research is required for better accuracy.

Lwin Khin Shar et al. [28] put forward a method to
recognize SQLIA and cross-site scripting attacks by
analyzing input sanitization patterns. This research
proposes static code features that might be used to predict
certain program statements as an alternative to existing
taint analyzers. To forecast SQLI and XSS vulnerabilities,
we utilize historical data to construct vulnerability
prediction models that reflect suggested static features
and known vulnerability data. According to the results of
the experiment, the proposed vulnerability predictors are
effective and successful at what they were intended to do.
However, it has been found that predictors produced this
way do not give the same results across investigations and
therefore the authors aim to undertake further trials on a
variety of systems and re-evaluate existing findings.

William G.J. Halfond et al. [29] presented a model titled
"AMNESIA," which analyses and monitors SQLIAs. The
method is based on earlier work in a security analysis of
models and programs and combines static and dynamic
analysis tools designed for SQLIAs. The main discoveries
are that the knowledge required to predict the structure of
a website’s queries is contained inside its code and that a
SQLIA would breach that structure by introducing more
snippets. The study's findings reveal that the technique
was successful in stopping attacks without producing
erroneous results. Where static analysis is incapable of
being used, alternative methodologies for building SQL
models will be examined in future studies.

G.Buja et al. [30] presented a model that identifies SQLIA
in web applications. The suggested detection methodology
will generate a summary of how susceptible the website
would be and as a result, reduce the chances of such an
attack. There is only one core detecting module. The
method will be carried out using the Boyer Moore
technique to match strings which improves effectiveness
and precision. This approach will help a website developer
or admin take further efforts to protect their program
from external hacks or exposure to the web application's
SQL Injection susceptibilities. Performance can be
improved by detecting and adding a couple of extra
arguments to the "Parameter Testing Panel."

3. CONCLUSIONS

 A lot of careful investigation is being conducted to identify
SQL Injection Attacks (SQLIA). We evaluate and review
over 30 approaches that employ various algorithms to
detect and minimize SQLIA in web applications in this
research. Some of the methods, models, and classifiers that
were used are Deep Learning, CNN, LSTM, Bi-LSTM,
Pattern-based Neural Networks, Decision Trees, Hybrid
Taint Inference, etc. The number of data sets utilized
varied between 1,000 and 100,000.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1522

When evaluated experimentally, most studies
demonstrate great performance, indicating that they are
capable of detecting most SQL Injections. Confusion
matrix, accuracy, efficiency, precision, and recall are
common measures used to assess this degree of
performance. The results also suggest that there is room
for more study and research in the future to improve and
expand the approaches utilized.

REFERENCES

[1] X. Xie, C. Ren, Y. Fu, J. Xu, and J. Guo, "SQL Injection
Detection for Web Applications Based on Elastic-
Pooling CNN," in IEEE Access, vol. 7, pp. 151475-
151481, 2019.

[2] J. K. R, S. Balaji B, N. Pandey, P. Beriwal and A.
Amarajan, "An Efficient SQL Injection Detection
System Using Deep Learning," 2021 International
Conference on Computational Intelligence and
Knowledge Economy (ICCIKE), 2021, pp. 442-445.

[3] B. Appiah, E. Opoku-Mensah, and Z. Qin, "SQL injection
attack detection using fingerprints and pattern
matching technique," 2017 8th IEEE International
Conference on Software Engineering and Service
Science (ICSESS), 2017, pp. 583-587.

[4] W. H. Rankothge, M. Randeniya and V. Samaranayaka,
"Identification and Mitigation Tool for SQL Injection
Attacks (SQLIA)," 2020 IEEE 15th International
Conference on Industrial and Information Systems
(ICIIS), 2020, pp. 591-595.

[5] W. Sirisang and V. Suttichaya, "Analyzing SQL
Injection Statements Using Common Substructure of
Parse Tree," 2017 21st International Computer
Science and Engineering Conference (ICSEC), 2017,
pp. 1-5.

[6] Das, D., Sharma, U. & Bhattacharyya, D.K., “Defeating
SQL injection attack in authentication security: an
experimental study”, Int. J. Inf. Secur. 18, 1–22 (2019).

[7] A. Naderi-Afooshteh, A. Nguyen-Tuong, M. Bagheri-
Marzijarani, J. D. Hiser and J. W. Davidson, "Joza:
Hybrid Taint Inference for Defeating Web Application
SQL Injection Attacks," 2015 45th Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks, 2015, pp. 172-183.

[8] Y. Fang, J. Peng, L. Liu, and C. Huang, ‘‘WOVSQLI:
Detection of SQL injection behaviours using word
vector and LSTM,’’ in Proc. ICCSP, 2018, pp. 170–174.

[9] B. Hanmanthu, B. R. Ram and P. Niranjan, "SQL
Injection Attack prevention based on decision tree
classification," 2015 IEEE 9th International

Conference on Intelligent Systems and Control (ISCO),
2015, pp. 1-5.

[10] C. Ping, "A second-order SQL injection detection
method," 2017 IEEE 2nd Information Technology,
Networking, Electronic and Automation Control
Conference (ITNEC), 2017, pp. 1792-1796.

[11] M. Qbea'h, M. Alshraideh and K. E. Sabri, "Detecting
and Preventing SQL Injection Attacks: A Formal
Approach," 2016 Cybersecurity and Cyberforensics
Conference (CCC), 2016, pp. 123-129.

[12] Y. Wang, D. Wang, W. Zhao, and Y. Liu, "Detecting SQL
Vulnerability Attack Based on the Dynamic and Static
Analysis Technology," 2015 IEEE 39th Annual
Computer Software and Applications Conference,
2015, pp. 604-60.

[13] Li Qian, Zhenyuan Zhu, Jun Hu and Shuying Liu,
"Research of SQL injection attack and prevention
technology," 2015 International Conference on
Estimation, Detection and Information Fusion
(ICEDIF), 2015, pp. 303-306.

[14] T. Oosawa and T. Matsuda, "SQL injection attack
detection method using the approximation function of
zeta distribution," 2014 IEEE International
Conference on Systems, Man, and Cybernetics (SMC),
2014, pp. 819-824.

[15] M. B. A and M. Arock, "Efficient Detection Of SQL
Injection Attack (SQLIA) Using Pattern-based Neural
Network Model," 2021 International Conference on
Computing, Communication, and Intelligent Systems
(ICCCIS), 2021, pp. 343-347.

[16] Sangeeta, S. Nagasundari and P. B. Honnavali, "SQL
Injection Attack Detection using ResNet," 2019 10th
International Conference on Computing,
Communication and Networking Technologies
(ICCCNT), 2019, pp. 1-7.

[17] M. Hasan, Z. Balbahaith and M. Tarique, "Detection of
SQL Injection Attacks: A Machine Learning Approach,"
2019 International Conference on Electrical and
Computing Technologies and Applications (ICECTA),
2019, pp. 1-6.

[18] Z. Xiao, Z. Zhou, W. Yang and C. Deng, "An approach
for SQL injection detection based on behaviour and
response analysis," 2017 IEEE 9th International
Conference on Communication Software and
Networks (ICCSN), 2017, pp. 1437-1442.

[19] P. Lin, W. Jinshuang, C. Ping and Y. Lanjuan, "SQL
Injection Attack and Detection Based on GreenSQL
Pattern Input Whitelist," 2020 IEEE 3rd International

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1523

Conference on Information Systems and Computer
Aided Education (ICISCAE), 2020, pp. 187-190.

[20] S. O. Uwagbole, W. J. Buchanan and L. Fan, "Applied
Machine Learning predictive analytics to SQL Injection
Attack detection and prevention," 2017 IFIP/IEEE
Symposium on Integrated Network and Service
Management (IM), 2017, pp. 1087-1090.

[21] A. Jana, P. Bordoloi, and D. Maity, "Input-based
Analysis Approach to Prevent SQL Injection Attacks,"
2020 IEEE Region 10 Symposium (TENSYMP), 2020,
pp. 1290-1293.

[22] P. Lin, W. Jinshuang, C. Ping and Y. Lanjuan, "SQL
Injection Attack and Detection Based on GreenSQL
Pattern Input Whitelist," 2020 IEEE 3rd International
Conference on Information Systems and Computer
Aided Education (ICISCAE), 2020, pp. 187-190.

[23] A. Luo, W. Huang, and W. Fan, "A CNN-based Approach
to the Detection of SQL Injection Attacks," 2019
IEEE/ACIS 18th International Conference on
Computer and Information Science (ICIS), 2019, pp.
320- 324.

[24] N. Gandhi, J. Patel, R. Sisodiya, N. Doshi and S. Mishra,
"A CNNBiLSTM based Approach for Detection of SQL
Injection Attacks," 2021 International Conference on
Computational Intelligence and Knowledge Economy
(ICCIKE), 2021, pp. 378-383.

[25] K. Kamtuo and C. Soomlek, "Machine Learning for SQL
injection prevention on server-side scripting," 2016
International Computer Science and Engineering
Conference (ICSEC), 2016, pp. 1-6.

[26] Inyong Lee, Soonki Jeong, Sangsoo Yeo, Jongsub Moon,
“A novel method for SQL injection attack detection
based on removing SQL query attribute values”,
Mathematical and Computer Modeling, Volume 55,
Issues 1–2, 2012, pp. 58-68.

[27] R. A. Katole, S. S. Sherekar and V. M. Thakare,
"Detection of SQL injection attacks by removing the
parameter values of SQL query," 2018 2nd
International Conference on Inventive Systems and
Control (ICISC), 2018, pp. 736-741.

[28] Lwin Khin Shar, Hee Beng Kuan Tan, ”Predicting SQL
injection and cross-site scripting vulnerabilities
through mining input sanitization patterns”,
Information and Software Technology, Volume 55,
Issue 10, 2013, pp. 1767-1780.

[29] William G. J. Halfond and Alessandro Orso. 200,
“AMNESIA: analysis and monitoring for NEutralizing
SQL-injection attacks”, Proceedings of the 20th

IEEE/ACM International Conference on Automated
software engineering (ASE '05), Association for
Computing Machinery, New York, NY, USA, 174–183.

[30] G. Buja, K. B. A. Jalil, F. B. H. M. Ali, and T. F. A. Rahman,
"Detection model for SQL injection attack: An
approach for preventing a web application from the
SQL injection attack," 2014 IEEE Symposium on
Computer Applications and Industrial Electronics
(ISCAIE), 2014, pp. 60-64.

