
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1929

Clock Synchronization in Distributed Systems

Amey Thakur1 , Mega Satish2

1-2Department of Computer Engineering, University of Mumbai, Mumbai, MH, India
---***---

Abstract — Clock discrepancies are troublesome in

distributed systems and pose major difficulties. To avoid

mistakes, the clocks of separate CPUs must be synced. This is

to ensure that communication and resource sharing are as

efficient as possible. As a result, the clocks must be

constantly monitored and adjusted. Otherwise, the clocks

drift apart. Clock skew causes a disparity in the time values

of two clocks. Both of these issues must be solved in order to

make effective use of distributed system characteristics. In

this study, we briefly explored the features of distributed

systems and its algorithms.

Keywords — Clock Synchronization, Distributed Systems,

Physical Clock, Logical Clock, Cristian Algorithm, Berkeley

Algorithm, Network Time Protocol (NTP), Lamport’s

Clock, Vector Clock, Bully Algorithm, Ring Algorithm.

1. INTRODUCTION

1.1 Distributed systems and its types

Distributed System (DS) is a collection of computers

connected via a high-speed communication network [1]. A

distributed system is one in which interconnected

hardware and software interact and coordinate their

operations only through exchanging messages.

There are two types of Distributed Systems:

1. Homogeneous Distributed Systems:

- It is a distributed system such that all nodes have

identical hardware, the same type of architecture,

and operating system.

2. Heterogeneous Distributed Systems:

- It is a distributed system such that each node has

its own operating system and machine

architecture. Each node in a distributed system

can share its resources, e.g., the producer-

consumer processes and the client-server

processes, sharing a printer or scanner. However,

resources are finite and can be distributed in

either collaborative or competitive forms.

Resources like a printer and scanner cannot be

used by multiple processes simultaneously, so

they must wait for one process to complete and

then give a chance to the next process. Another

instance is producer-consumer as well as client-

server operations that operate in extensive

cooperation.

1.2 Need to resynchronize the clocks

So there is a need for proper allocation of available

resources, to preserve the state of resources and

coordination between processes. Clock synchronization

[2] is critical for resolving these problems. Clock

synchronization can be implemented by using the physical

clock and logical clock.

1.3 Issues in Clock Synchronization

A basic technique of clock synchronization [2][3] is for

each node to submit a time query message to the real-time

server. The node gets a reply message with the value of

time 't'. This method has the following issues:

- Every node's capacity to read the clock value of

another node. This can raise errors due to delays

in message communication between nodes. The

time required to prepare, deliver, and get a blank

message because of the lack of transmission

problems and system load can be used to

calculate delay.

- Time should never be reversed since it might lead

to the recurrence of events or transactions,

causing chaos in the system. Time going

backwards is only a notion; it does not literally

travel backwards.

1.4 Reasons for Delay in Synchronization

As discussed above, there are many reasons [3][4] for a

communication delay that needs to be minimized to

minimize delay and get a nearby accurate time.

1. Communication Link Failure: For example, when

sending a request message, the communication

link is working properly and the message reaches

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1930

the server. If at the time of receiving a message,

the communication link may fail due to some

break. And the client may not be able to get a

reply message. After recovery, the reply reaches

the client which contains a false time value.

2. Fault Tolerance: If any failure happens during

exchanging messages, the clock time may be

incorrectly interpreted. So the system should be

fault-tolerant so that it can work in a faulty

situation and minimize the clock drift value.

3. Propagation Time: Due to heavy traffic or

congestion in the network, it may cause a large

propagation time from server to client. It may

cause the inaccurate reading of the clock value in

the reply.

4. Non-Receipt of Acknowledgement: It may be

possible that due to the above reasons client will

not get a reply within a round trip time and

therefore it sends multiple requests to the server

for synchronization.

5. The Bandwidth of Communication Link: Due to

the low bandwidth of communication links,

congestion may occur in the network. As a result,

requests for time will be unable to reach the

server and reply messages will be unable to get to

the client, affecting clock synchronization.

2. Clocks in Synchronization

In synchronization [2], there are two types of clocks.

1. Physical Clock:

- Time isn't a big issue in traditional centralized

systems, where one or more CPUs share a

common bus. The entire system shares the same

understanding of time, right or wrong, it is

consistent.

- In distributed systems, this is not the case. Every

system, though, has its own timer that keeps the

clock running. These clocks are based on the

oscillation of a piezoelectric crystal or a similar

integrated circuit. They are not flawless, but they

are relatively precise, reliable, and accurate. This

implies that the clocks will differ from the correct

time. Every timer is different in terms of

characteristics — characteristics that might

change with time, temperature. Thus, each

system's time will drift away from the true time at

a different rate — and perhaps in a different

direction (slow or fast).

- It is feasible to coordinate physical clocks across

several systems, but it will never be accurate. The

drifting away from the real-time from each clock

is something that happens in a distributed system.

2. Logical Clock:

- Logical clocks mean creating a protocol on all

computers in a distributed system so that the

computers can keep a uniform ordering of

happenings inside some virtual time range.

- In a distributed system, a logical clock is a

technique for recording temporal and causative

links. Because distributed systems may lack a

physically synchronized global clock, a logical

clock provides for the global ordering of

occurrences from various processes in certain

systems.

3. Clock Synchronization Algorithms

3.1 Cristian Algorithm

Cristian’s Algorithm is a centralized clock synchronization

algorithm used to synchronize time with a time server by

client processes. This algorithm works well with a low

latency network where the round-trip time — time

duration between the start of request and end of

corresponding response — is short as compared to the

accuracy. It is an approach in which the client approaches

the server.

Figure 1: Cristian’s Algorithm Workflow

A client sends a request to a time server for its current

value of the UTC time (�s). The client records the time its

request was submitted (�0) and the time it got the

response (�1). Then, the client changes its current time at

�1 with the value received from the server plus its

estimate of the delay in obtaining this value, resulting in

the total time required to submit the query and get the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1931

response, which is (�1−�0)/2. The new time value is thus

�s+(�1−�0)/2.

Figure 2: Cristian’s Algorithm Working

Algorithm:

- Let S be the time server and Ts be its time.

- Process P requests the time from S.

- After receiving the request from P, S prepares a

response and appends time Ts from its own clock

and then sends it back to P.

3.2 Berkeley Algorithm

The Berkeley Algorithm is a centralized clock

synchronization mechanism in a distributed system that

implies no computer has a precise timing source. The

algorithm was developed by Gusella and Zatti at the

University of California, Berkeley in 1989.

This algorithm is an example of an active time server

approach: the time server periodically sends a message to

all the computers in the group. When the message is

received, each computer then sends back its own clock

value to the time server. It is an approach in which the

server approaches the client.

message which is used to readjust the message. The time

server then takes the average of all clock values of all the

computers. All clocks should be readjusted to the current

time which is the calculated average. The time server

readjusts its own clock value to this value and instead of

sending the current time to other computers, it sends the

amount of time each computer needs for readjustment.

The value may be positive or negative.

Figure 4: Berkeley’s Algorithm Working

3.3 Network Time Protocol

Network Time Protocol is a standard followed by

synchronization clocks on the internet. It is a

decentralized algorithm.

The Network Time Protocol (NTP) is a commonly

employed Internet Engineering Task Force (IETF)

standard (RFC 1305). (RFC 1305). The main servers are

directly linked to a precise and dependable UTC time

source. They are the foundations of hierarchical time

service, with additional servers becoming operational as

we go away from the roots. The common configuration

includes UTC time servers at big government institutions

at stratum 1, institutional time servers or Internet service

providers' time servers at stratum 2, and most users

linking to academic time servers at stratum 3.

NTP may synchronize computers in three modes: first is

the client-server mode, the second is the multicast mode,

and the last is the symmetrical (peer) mode. In the client-

server mode, the client makes queries to the server upon

startup and on a regular basis thereafter. In a way similar

to Cristian's technique, it tracks the time at which the

request and response are delivered and received in order

to factor out network latency as much as feasible. Because

the server multicasts its time value on a regular basis, the

multicast mode is frequently more efficient. On a local area

network with multicast capabilities, time

resynchronization can be accomplished in a single

Figure 3: Berkeley’s Algorithm Workflow

Here the time server has prior knowledge of the

approximate time required for the propagation of the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1932

message rather than two messages per client (e.g.,

Ethernet). However, in order to assess the network latency

and adjust for it, the clients must first conduct a few client-

server queries. However, if the network parameters

change over time, the multicast mode's accuracy will be

inferior to that of the client-server mode.

The Simple Network Time Protocol (RFC 2030) is a

Network Time Protocol adaptation that supports

operation in a stateless remote procedure call mode or

multicast mode. It is designed for use in contexts where a

complete NTP implementation is neither required nor

warranted. SNTP is intended to be utilized at the

endpoints of the synchronization subnet (high stratum)

rather than for time server synchronization.

Figure 5: Architecture of Network Working Protocol

3.4 Lamport’s Clock

In a distributed system, it is not necessary for the clocks to

be absolutely synchronized. If two processes do not

interact with each other, it is not necessary that their

clocks need to be synchronized because the lack of

synchronization would not matter. It is not important for

all processes to agree on what the current time is but they

should agree on the order in which events occur.

In a distributed system, Lamport Clocks [5] are a basic

mechanism for identifying the sequence of events. It gives

a "Happened-Before" sequencing of occurrences. If there is

no “happened-before” relationship, then the events are

considered concurrent.

Algorithm:

The “Happened before” relation between a and b is a -> b,

which means ‘a’ happened before ‘b’.

The criteria for logical clocks are:

- Clock 1: Ci (a) < Ci(b), Ci -> Logical Clock, if ‘a’

happened before ‘b’, then the time of ‘a’ will be

less than ‘b’ in a particular process.

- Clock 2: Ci(a) < Cj(b), Clock value of Ci(a) is less

than Cj(b).

3.5 Vector Clock

In Lamport’s clock, if x -> y, then T(x)<T(y). But this does

not tell about the relationship between events x and y.

That’s because Lamport’s clock do not capture causality.

The causal relationship between messages is captured

through vector clocks.

Vector Clock [9] is an algorithm that creates a partial

ordering of occurrences and identifies causality breaches

in a distributed system. Such clocks extend on vector time

to provide for a logically coherent picture of the

distributed system; they identify if a contributed activity

has triggered another activity. It essentially captures all

the causal relationships. This approach assists in labelling

each process within the system with a vector (a list of

numbers) including an integer for each local clock. As a

result, for every N process, there will be a vector of size N.

Algorithm:

- All of the clocks are initialized to zero.

- When an internal event happens in a process, the

number of the process's logical clock in the vector

is increased by one.

- Also, every time a process sends a message, the

value of the process's logical clock in the vector is

incremented by one.

- Every time a process receives a message, the

value of the process's logical clock in the vector is

incremented by one, and moreover, each element

is adjusted by calculating the maximum value of

the vector clock and the vector value in the

incoming message.

-

3.6 Election Algorithms

Algorithms used in distributed systems necessitate the

usage of a coordinator who performs duties required by

other processes in the system. Election algorithms [7] are

meant to select a coordinator.

Election algorithms choose a process from a group of

processors to act as a coordinator. If the coordinator

process fails for whatever reason, another processor

chooses a new coordinator. The election algorithm decides

where a new copy of the coordinator should be begun.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1933

The election method is based on the assumption that each

active activity in the system has a distinct priority number.

As a new coordinator, the process with the utmost priority

will be picked. Hence, when a coordinator fails, this

algorithm elects that active process that has the highest

priority number. Then this number is sent to every active

process in the distributed system.

3.6.1 Bully Algorithm:

Bully Algorithm [7] was proposed by Garcia Molina. This

algorithm is planned on assumptions: a. Each process in a

situation has a process identifier that may be used to

identify it uniquely.

Each process should know the process numbers of all the

remaining processes.

The process with the highest process number is elated as

coordinator.

Algorithm:

- A process P notices that the coordinator is no

longer responding, it will initiate an election.

- P will send the election to all other processes with

a higher process id than its. If no one responds,

process P becomes the coordinator.

- If one of the higher processes answers, P’s job is

done and the higher process will take over.

- When process P gets a message from one of its

lowered id, it sends an OK message to the sender

that it will take over and that the process is alive.

- Eventually, all processes will give up apart from

one, which is the coordinator. The coordinator

finally wins and announces its victory by sending

a message to everyone.

Figure 6: Working of Bully Algorithm

3.6.2 Ring Algorithm:

The ring algorithm [8] is another example of an election

algorithm. This algorithm assumes that the processes are

arranged in a logical ring and each process knows the

order of the ring of processes. The processes are able to

‘skip’ faulty systems - systems that don’t respond in a fixed

amount of time.

Algorithm:

- Here, when the process notices that the

coordinator is dead, it builds and sends an

election message to other processes.

- At every step, processes keep on adding their own

id at the end of this.

- This stops when the initiator -- a process that

started the election -- receives the message it sent.

- After this, the process with the higher id is

declared to be a coordinator.

- The initiator then announces the coordinator by

sending the message to the nodes.

- Here the maximum number of initiators is 2.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 03 | Mar 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1934

Figure 6: Working of Ring Algorithm

CONCLUSION

Several synchronization algorithms in distributed systems

have been studied in this paper. In terms of algorithms, we

can conclude that for clock synchronization, both

centralized and distributed algorithms must account for

the propagation time of messages among each node. The

sequencing of processes and the preservation of resource

status requires clock synchronization. When it comes to

the concept of time in distributed systems, the most

essential element is to get the events in the right sequence.

Events can be positioned either in chronological order

with Physical Clocks or in a logical order with Lamport's

Logical Clocks and Vector Clocks along the execution

timeline.

REFERENCES

[1] Latha, C. A., and H. L. Shashidhara. "Clock

synchronization in distributed systems." In 2010 5th

International Conference on Industrial and Information

Systems, pp. 475-480. IEEE, 2010.

[2] Horauer, Martin. "Clock synchronization in distributed

systems." PhD diss., 2004.

[3] Sampath, Amritha, and C. Tripti. "Synchronization in

distributed systems." In Advances in Computing and

Information Technology, pp. 417-424. Springer, Berlin,

Heidelberg, 2012.

[4] Biradar, Shripad, Santosh Durugkar, and Subhash

Patil. "Handling Clock synchronization Anomalies in

Distributed System."
[5] Simons, Barbara. "An overview of clock

synchronization." Fault-Tolerant Distributed

Computing (1990): 84-96.
[6] Welch, Jennifer Lundelius, and Nancy Lynch. "A new

fault-tolerant algorithm for clock synchronization."

Information and computation 77, no. 1 (1988): 1-36.
[7] Arghavani, A., E. Ahmadi, and A. T. Haghighat.

"Improved bully election algorithm in distributed

systems." In ICIMU 2011: Proceedings of the 5th

international Conference on Information Technology &

Multimedia, pp. 1-6. IEEE, 2011.
[8] Soundarabai, Paulsingh & Thriveni, J. & Manjunatha,

H. & K R, Venugopal & Patnaik, Lalit. (2013). Message

Efficient Ring Leader Election in Distributed Systems.

[9] Baldoni, Roberto, and Michel Raynal. "Fundamentals

of distributed computing: A practical tour of vector

clock systems." IEEE Distributed Systems Online 3, no.

2 (2002): 12.

