
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1318

Component based User Interface Rendering with State Caching
Between Routes

Jinu Sophia J1 Naveen Kumar A2, Nithish S3, Purushothaman J4

1Assistant Professor, Department of Computer Science and Engineering, Rajalakshmi Engineering College, Chennai,
Tamilnadu, India .

2-4Undergraduate student, Computer Science and Engineering, Rajalakshmi Engineering College, Chennai,
Tamilnadu, India .

---***---
Abstract - The web has transformed itself into a platform
that can now run full-fledged application like websites
enhancing the user experience and avoiding the hustle of
installing bundles to run native applications. This change in
the usage of the web as a platform to host applications has
made client-side Javascript more the workhorse than it
usually was in conventional websites. Routing is a major
aspect in making the user experience a more native feel and
so came into the limelight the concept of client-side routing.
This enables the routing to be taken care of by the client-
side Javascript, making the application's execution context
remain the same for all the views of the application. The
execution context not being disposed of for every action of
changing route enables the state of the application to be
stored in a cache for later use when the user visits a view
that is already in the history of routes. Caching takes a
major leap into providing a near native-like application fell
as the user gets to come back to the same state of view that
they left behind.

Key Words: Component Based UI, State Driven UI,
Client-Side Routing, Rendering HTML, Caching State
Between Routes

1. INTRODUCTION

The Web has evolved into a platform that can host
applications rather than conventional websites. For long
websites were used as a source for transferring
information with hyperlinked documents. Then came
websites that dynamically showed content based on the
user. The user navigated between views of the website by
clicking links embedded in the document with anchor tags.
A hot reload of the page had to be performed as the
browser fetched the HTML(HyperText Markup Language),
CSS(Cascading Style Sheet), Javascript and other
dependent files from the server. Once fetched the browser
then rendered the page and executed the Javascript linked
with the page. Hot-reloading of the page results in the
application’s execution context changing for every view
change resulting in any specific application state getting
lost once and for all. This incoherent behavior alienates
the web application from feeling seamless. Apart from
delivering a non-seamless user experience, the HTML, CSS,
and Javascript files for a view are fetched from the server

every time the link is visited. Network calls involved in
fetching these files prove costly and repeated calls within
a short period make the network calls a costly redundant
work.

The downsides mentioned can be worked around by
making the application client-side routed. In client-side
routing, the entire application bundle is fetched in the very
first request to the server and subsequent HTML to be
rendered in the event of a view change is handled by the
client-side Javascript by preventing the reload, hence
preserving the execution context. This opens up the
possibility to cache application state.

1.1 Server-Side Routing

 In server-side rendering/ server-side routing, the
client(browser) requests the server with the URL(Uniform
Resource Locator) that the user wants to visit. The server
parses the URL for the path name of the route requested
and finds the match with the routes registered in the
server. The server now responds back with the HTML, CSS,
Javascript and other dependent files.

In dynamic websites that show different content
depending on the user interacting with the website, the
HTML built by the server using a template engine is
shipped to the browser. The initial load time of a server-
side routed web page is fast compared to a client-side
routed website as the documents corresponding only to the
requested route are shipped. Server-side routing gets the
upper hand in First Paint, First Contentful Paint, and Time
to Interactive. Server-side routing has a clear upper hand in
making websites easy to scrap so that search engines can
readily index the websites.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1319

Fig -1: Server-Side Routing

1.2 Client-Side Routing

In client-side routing/ client-side rendering, the
client(browser) requests the server with the URL that the
user wants to visit. In this routing method, only the base
URL is taken into consideration by the server. The server
responds with the entire application bundle containing all
the documents needed for all the views within the
application. Irrespective of the route requested by the
client, the server’s response is the entire application
bundle.

Although the initial load time is slow, subsequent route
transitions will have swift load times because no request
has to be made to the server. Any data coming from an API
can be fetched using AJAX(Asynchronous Javascript and
XML) calls. AJAX allows browsers to make network calls
without performing a reload. The API in most cases
responds with dynamic JSON data depending on the user.
This data is used to present information in the UI to the
user and the HTML is built by the client.

Building HTML in the client minimizes the workload of
the server thus increasing its throughput. Also sending
only the JSON data needed reduces the overhead of
sending the entire document over the network. All these
put together provide a seamless and native-application-
like feel to the user. These advantages of client-side
routing make the compromises made over First Paint,
First Contentful Paint, and Time to Interactive justifiable.

Fig -2: Client-Side Routing

1.3 View Layer

The view layer of the MVC(Model View Controller)
model contains the presentable visual aspects of the
application shown as UI to the user. The HTML and CSS
used to present information to the user qualify as the view
in our context.

1.4 UI Components

The User Interface is a complex structure of markup
that needs to be constantly monitored for any interactions
from the user. This complex structure can be
compartmentalized by breaking down the UI into small
and individual pieces of markup with the business logic
encapsulated into it. Once all the small components are
composed, they can be put together to form the complete
markup.

The components encapsulated with the business logic
can be placed inside a function signature so that the
function can be called to return the markup. This makes
way for easy reusability of the component, increasing the
development time. Each component can be made to listen
for a state change and consequently return the state
appropriate markup. Application state is a mutable and
observable property that controls the behavior of the
component. When the state is changed, it causes the entire
component to re-run its function and return the markup
based upon the current value of the state.

2. VIRTUAL DOM

The DOM(Document Object Model) maps the markup of a
page into a Javascript object that can be manipulated to
present visual changes in the UI. The DOM contains a tree
representation of the HTML along with the properties and
styles of the tags. This representation containing methods

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1320

to manipulate and change the view is exposed to the client-
side Javascript by the browser using which the DOM can be
manipulated.

A virtual DOM on the other hand is a lightweight, virtual
representation of the real DOM in memory created by a
library on top of the DOM API provided by the browser.
The virtual DOM only has the necessary document
structure and the properties associated with it. It does not
contain methods to change the view or the styles
associated with tags in the document making it a
lightweight wrap-around over the real DOM.

3. RENDERING

The virtual DOM contains the UI to be painted on the
screen. The contents of the virtual DOM are only for
reconciliation purposes and so cannot be directly
appended to the DOM or used for rendering. An object of
the virtual DOM will contain the type, properties, and its
children. This object can be passed to the render method
to recursively generate DOM objects for itself and its
children so that they can be appended to the real DOM.

Rendering recursively has its pitfall of blocking the main
thread until the entire recursive calls are done with their
execution. When this happens, Javascript being a single-
threaded language, the browser cannot listen for user
events or perform other essential work it is entitled to do.
This results in the UI becoming unresponsive. To
overcome this issue, the object to be rendered is broken
down into small pieces, each of which separately can be
passed to the render function so that it does not fall into
the recursion hell.

Each small piece of the virtual DOM object is called fiber.
At the start of the render process, the DOM object for the
root fiber is created and its subsequent child is made the
next work in progress root. Although this process seems
recursive, the use of the browser API requestIdleCallback
can be used to schedule work when the browser is free
and has no essential task to perform making it safe from
recursion hell.

The browser has some essential tasks to perform in the
name of calculating style, rasterization, listening for events
through event loop, and so on. All of these are vital and
any issues in performing these tasks will directly reflect in
the application’s performance going down. The
requestIdleCallback comes in handy to schedule the
rendering of UI whenever the browser’s main thread is
free from performing the essential tasks. This ensures that
the application does not become unresponsive during the
rendering process.

The DOM tree is rendered bottom-up meaning the
children are created first, the parent next and the children
are appended to the parent(Fig-2 and Fig - 3). This method

of bottom-up rendering helps in including support for
fragments and also improves performance as the real
DOM’s append method is called only once for each render
whereas the top-down approach calls the append method
for every fiber.

Fig -3: HTML Tree

Fig -4: Bottom Up Rendering for Tree in Fig - 3

4. RECONCILIATION

Every state change will result in the component returning
a different HTML tree compared to the previous tree. The
process involved in identifying the differences between
the two trees and applying the changes to the DOM is
called reconciliation. A direct approach of removing the
previous HTML structure and appending the new
structure to the DOM is a very costly operation because
every manipulation of the DOM will result in the browser
recalculating the styles, boxes for every element, and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 1321

rendering. To have very minimal interaction with the
DOM, the virtual DOM is maintained in memory and the
newly generated tree is compared with the virtual DOM.

The comparison flags the virtual DOM elements in three
ways. Update, if the type remains the same and only the
properties are different. Placement, if the UI element is
new to the DOM. Remove, if the element is present in the
old tree and absent in the new tree. This flagging happens
to every element of the virtual DOM as they are traversed
once. State-of-the-art algorithms to convert one tree to
another take O(n3) time. But the above-mentioned
method walks the entire tree only once taking only O(n)
time where n is the number of elements.

Fig -5: Converting One Tree to Another

5. CACHING STATE

The execution context remains the same with the use of
client-side routing for navigating within the application.
This can be used to maintain an in-memory cache for the
components to subscribe and store their state. With every
state change and a fresh run of the component function,
the component subscribes its most recent state with the
cache. When the user visits an already visited route, the
components can use the most recently cached state for its
execution. Fetching the state from the cache happens only
when an already visited route is navigated to and not in
other situations. This provides a native-like-application
feel inside of a web browser. JSON data from the server
can be stored in state variables so that when cached, the
redundant network call to the server again is prevented.
The cache is in memory, so a hard refresh of the page
flushes the cache.

Fig -6: Caching Mechanism

6. CONCLUSION

This method of developing web applications in a
declarative, component based, state based, client-routed,
and state cached environment takes away the non-
seamless nature of web applications and provides a more
native-like-application feel without the user having to
install bundles to use a native application. Caching also
majorly improves performance by preventing redundant
calls and provides an ideal user experience by maintaining
the application state even after the user has navigated to a
different route within the application. Component based
development will shorten development time and bugs can
be easily mapped and resolved. This approach to
developing modern web applications is more efficient and
can be adopted easily.

REFERENCES

[1] Shahzad, Farrukh. "Modern and responsive mobile-
enabled web applications." Procedia Computer
Science 110 (2017): 410-415.

[2] Mukhamadiev, Aidar. "Transitioning from server-side
to client-side rendering of the web-based user
interface: a performance perspective." (2018).

[3] Aggarwal, Sanchit. "Modern web-development using
reactjs." International Journal of Recent Research
Aspects 5.1 (2018): 133-137.

[4] Kishore, P., and B. M. Mahendra. "Evolution of Client-
Side Rendering over Server-Side Rendering." Recent
Trends in Information Technology and its Application
3.2 (2020).

[5] Grundy, John, and John Hosking. "Developing
adaptable user interfaces for component-based
systems." Interacting with computers 14.3 (2002):
175-194.

[6] Iskandar, Taufan Fadhilah, et al. "Comparison between
client-side and server-side rendering in the web
development." IOP Conference Series: Materials
Science and Engineering. Vol. 801. No. 1. IOP
Publishing, 2020.

[7] 7.Chansuwath, Wutthichai, and Twittie Senivongse. "A
model-driven development of web applications using
AngularJS framework." 2016

[8] Chansuwath, Wutthichai, and Twittie Senivongse. "A
model-driven development of web applications using
AngularJS framework." 2016 IEEE/ACIS 15th
International Conference on Computer and
Information Science (ICIS). IEEE, 2016.

