
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3324

Refactoring Web Services on AWS cloud (PaaS & SaaS)

Asst. Prof Pramod Salunkhe1, Pem Tshering2, Yashwant Chavan3

1(Dept. Of Computer Engineering, Bharati Vidyapeeth College of Engineering, Lavale, India)
2-3(B.E, Dept. Of Computer Engineering, Bharati Vidyapeeth College of Engineering, Lavale, India)

---***---
Abstract – Refactoring or re-architecting in its simplest can
be defined as ever-changing application code for the better.
Typically, the goal is to boost performance, quality, and
maintainability. Re-architecting for AWS expands those
advantages and allows extra ones such as better availability,
scalability, and reliability. Another major advantage that
refactoring provides is the ability to dump massive amounts of
undifferentiated work to AWS. Tasks such as hardware
maintenance, software patch management, information
updates, and more are all managed for you when using
services like Amazon Elastic Container Service (Amazon ECS),
Amazon Elastic Kubernetes Service (Amazon EKS), or AWS
Fargate, permitting your team to focus in what differentiates
your business [1]. In this paper, we will refactor our services
using a refactoring strategy to improve agility and business
continuity. We can include new features, and skills effectively
and easily, and have the best performance for our application
workload.

Key Words: Refactoring, Maintainability, AWS,
Continuity, Workload, Container Service, Kubernetes
Service

1. INTRODUCTION

We may assume, doing a project where the services are
running on physical machines/virtual machines/cloud
machines, it could be EC2 instances and we are dealing with
various services for our application workload, we could be
having databases, application servers, web servers, network
services like DNS, DHCP, etc. To manage all these multiple
teams are required, like the cloud computing team if we use
a cloud computing platform, the Virtualization team if we are
doing virtualization on our data center, the data center's
operation team, monitoring team, system admin team, and
few other teams will get involved managing this application
workload.

1.2 Why choose to refactor?

We pick out to refactor those applications that are very
critical, contribute revenue and are strategically crucial to
the business development. While less strategic business
applications are likely to be the candidate for re-hosting or
re-platforming. Some compelling reasons to pick out to
refactor an application include:

1. Create new revenue streams and/or optimize existing
ones.

2. Create further improvements that directly impact future
revenue opportunities.

3. Enable quick time-to-market with new features.

4. Support a changing/new business model.

5. Easily scale both up and down to meet planned and
unplanned changes in traffic [2].

1.3 Key components of AWS web hosting
Architecture

Here we describe some of the key components of the web
hosting architecture implemented on AWS and explain how
they differ from a traditional web hosting architecture.

 Content Delivery

Edge caching remains relevant in Amazon Web
Service's cloud computing infrastructure. Any
existing solution in web application infrastructure
should work just fine in the AWS Cloud. However,
when using AWS, an additional option is available to
use the Amazon CloudFront service for edge caching
your website. Amazon CloudFront can be used to
deliver dynamic, static, and streaming content, over
a global network of edge locations to your website.
Requests for the content are automatically routed to
the closest edge location, delivering content with
the best possible performance. CloudFront is
optimized to work with other Amazon Web services
such as Amazon S3 and Amazon EC2. CloudFront
also works seamlessly with origin servers other
than AWS that store the original, final versions of
your files. Like other AWS, there are no monthly
contracts or commitments to use CloudFront—you
only pay for it much or as little content as you
actually deliver through the Service.

 Managing public DNS

Migrating a web application to the Amazon Web
Service Cloud requires some DNS changes to take
advantage of the multiple availability zones
provided by AWS. For one to help manage DNS
routing, AWS provides Amazon Route 53, a highly
available and scalable DNS web service. Queries for
your domain are automatically routed to the nearest
DNS server and are therefore answered with the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3325

best possible performance. Route 53 resolves
requests for your domain name (e.g.
www.example.com) to your Elastic Load Balancer
as well as your zone apex record (example.com).

 Load balancing across clusters

Hardware load balancers are common networking
devices used in traditional web application
architectures. AWS provides this capability through
the Elastic Load Balancing service, a configurable
load balancing solution that supports host health
checks, balancing traffic on EC2 instances across
multiple availability zones, and dynamically adding
and removing Amazon EC2 hosts from the Server
supports rotation. Elastic Load Balancing can
dynamically increase or decrease load balancing
capacity to meet traffic demands while providing a
predictable entry point through the use of a
persistent CNAME. The Elastic Load Balancing
service also supports persistent sessions to meet
advanced routing requirements. If your application
requires advanced load balancing capabilities, you
can purchase a software load balancing package
(e.g. HAProxy, or Nginx) on EC2 instances. You
could then assign Elastic IP addresses to these load-
balanced EC2 instances to minimize DNS changes
[3].

2. PROBLEM STATEMENT

There is an excessive amount of operational overhead
where our team is struggling with the uptime and regular
scaling requirement, upfront capital expenditure, and regular
operational expenditure if you are using your own local data
center and processes will be manual and will be tough to
automate even with virtualization, all these processes will be
time-consuming and really expensive.

3. OBJECTIVE

 We need a flexible infrastructure.

 No upfront cost (Pay-as-we-go model).

 We need IaaC

 We need PaaS

 SaaS for ease of managing out infrastructure so to
have low latency operational overhead.

4. SOLUTION

We are using a cloud platform, but instead of using IaaS, we
will be mostly using PaaS and SaaS services. We are not going
with regular Ec2 instances but will be using some cloud-

managed services from AWS. Cloud here means we can code
our infrastructure, so we can have IaaS.

PaaS and SaaS services are easy to manage, flexible, and
elastic in nature. Scaling will be mostly taken care of by the
cloud vendors and it will be a pay-as-you-go model with more
automation, so refactoring the application gives an easy
infrastructure to manage, increased performance, and is
convenient to scale. There will be no need of huge teams to
manage all this.

5. PROPOSED WORK

Aws services we will be using in this project include:

5.1 Front-end

 Instead of using regular Ec2 instances we will be
using the Beanstalk service (VM for Tomcat app
server) and this service will in turn create an Ec2
instance and host our application on it. We don’t
need to manage this Ec2 instance manually.

 Beanstalk service will also have a load balancer.

 It will also have auto-scaling and S3/EFS bucket for
storing the artifacts or we can use our own S3
bucket.

5.2 Back-end

 In the back-end of the database we will be using RDS
instances. It’s really like a PaaS, so you will get a
database platform to choose from, just need to fill in
the requirement and the database is up and running
in no time.

 Scaling will be very easy.

 Regular backup will be taken automatically.

 We will be using the ElastiCache service instead of
Memcached.

 ActiveMQ instead of RabbitMQ.

 Route 53 for DNS.

 CloudFront for content delivery network, so if we
have a global audience then using CloudFront for the
content delivery network will be very easy and
convenient.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3326

5.3 System architecture

 Fig -1: System architecture

Users will access our URL which will be resolved to an
endpoint from Amazon Route 53. The endpoint will be of
Amazon CloudFront content delivery network which will
cache a wide variety of things to serve the global audience.

From there the request will be redirected to an application
load balancer which is part of Elastic Beanstalk. The
application load balancer will forward the request to an Ec2
instance which is in an auto-scaling group. Here our Tomcat
application service will be running and all this will be a part
of Elastic Beanstalk.

There will be also Amazon CloudWatch alarms that will be
monitoring the auto-scaling group and will scale out and
scale in based on the requirement.

There will be an S3 bucket where artifacts will be stored and
we can deploy our latest artifact by just clicking a button.

So our entire front end will be managed by the beanstalk.

For the back-end in Memcached instead of RabbitMQ, we are
using AmazonMQ. Instead of using Memcache on the Ec2
instance, we’re using Elastic cache service.

Instead of using a database running on the Ec2 instance,
we’re going to use Amazon RDS.

5.4. Flow of execution

 Login to AWS account

 Create key pair for beanstalk instance login.

 Create a security group for (backend service)
ElastiCache, RDS, and ActiveMQ.

 Then create:

 RDS

 Amazon ElastiCache

 Amazon ActiveMQ

 Create an Elastic Beanstalk environment.

 Update backend security group to allow traffic from
Beanstalk security group.

 Update backend security group to allow internal
traffic.

So, by now our backend services will be also up and
running, and RDS will be also up and running

 Launch Ec2-Instance for Database initialization.

 Login to the instance and Initialize the RDS
database.

 Change healthcheck on Beanstalk to /login.

 Add 443 HTTPS listener to the elastic load balancer

 Build artifact with backend information.

So, by now we should have the endpoint of RDS, the
endpoint of AmazonMQ, and the endpoint of ElastiCache.
We will feed this information into our application
properties file and we’ll build the artifact.

 Then we’ll deploy the artifact to the beanstalk

environment.

 Create a content delivery network using Amazon
CloudFront with an SSL certificate for the HTTPS
connection.

Once we have this ready we can.

 Update our load balancer endpoint on GoDaddy
DNS zones or we can also do this on Amazon Route
53 public DNS zone.

Once this is all ready,

 We will test it from the URL.

6. CONCLUSIONS

 Our Website is really getting surfed from CloudFront
distribution. Now we have our entire stack and we are using
PaaS and SaaS services, we are not directly using Ec2
instances or so. Our entire setup is going to give us very low
operational overhead so we don’t need many engineers, and
admins to manage our entire setup.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 05 | May 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3327

REFERENCES

[1] Modernizing with AWS, online available at:
https://www.newrelic.com/resources/white-
papers/modernizing-aws-refactoring-your-
applications/

[2] Why is refactoring your code important in Agile. Mario

Fernandez April 19, 2021 Available at:
https://www.coscreen.co/blog/refactoring-your-code-
in-agile/ [12/4/2022]

[3] Matt Tavis, Philip Fitzsimons. Web Application Hosting
in AWS, September 2012.

https://www.newrelic.com/resources/white-papers/modernizing-aws-refactoring-your-applications/
https://www.newrelic.com/resources/white-papers/modernizing-aws-refactoring-your-applications/
https://www.newrelic.com/resources/white-papers/modernizing-aws-refactoring-your-applications/
https://www.coscreen.co/blog/refactoring-your-code-in-agile/
https://www.coscreen.co/blog/refactoring-your-code-in-agile/

