Analysis of Seismic Behaviors of RC Frame Structure With Bracing System and Without Bracing System

Shivam Prajapati¹, Prof. Siddhartha Deb², Prof. Satyendra Dubey³

¹M-Tech Structural Engg. Studen, Deptt. Of Civil Engg. Gyan Ganga Inst. Of Tech & Science, Jabalpur, M.P. India. ²Assitant Professor Department of Civil Engineering, Gyan Ganga Inst. Of Tech & Science, Jabalpur, M.P. India. ³Associate Professor Department of Civil Engineering, Gyan Ganga Inst. Of Tech & Science, Jabalpur, M.P. India. ***

Abstract – In this research work time history analysis is carried out for G+23 RC building of square shape 52mX52m (plan configuration) frame structure without and with different steel bracing system viz. X, V, inverted V, Eccen Forward, Eccen Back. The member property of beams 300mm X 400mm and columns 300mm X 500mm and ISLB250 sections are used to compare for same patterns of beam, column and bracings. We provide different seismic and other parameters like Seismic Zone- III, Soil Site factor 2 for Medium Soil, Damping = 5% (as per table-3 clause 6.4.2), Zone factor for zone III, Z=0.16), Importance Factor I=1.5 (Important structure as per Table-6), Response Reduction Factor R=5 for Special steel moment resisting frame Table-7), Sa/g= Average acceleration coefficient (depend on Natural fundamental period)Grade of concrete is considered M25, Grade of Rebar is considered Fe-415, Grade of Steel - Fe-345, Dead Load for Wall 12.88 KN/m, Dead Load for Slab 3 KN/m2. . The property of the section is used as IS 456:2016 and per IS 800:2007 by using Etab Software and analyzed as per 1893-2016 by Response Spectrum Method. The comparative analysis is done in the term of storey displacement.

Key Words: Retrofit, ,Seismi analysis, braced RC structures, Seismic Zone, types of Soil, Steel Brace, RC Structure, Etab Software's etc.

1. INTRODUCTION

The concrete structure with Steel braced frame is one amongst the structural system comfortable repel the earthquake masses within the multistorey buildings, several existing bolstered cement concrete buildings must be retrofitting to beat deficiencies to resist seismal masses. the employment of steel bracing systems for strengthening or retrofitting seismically light concrete frames could be a viable answer for enhancing tremor confrontation.

The primary purpose of every kind of structural systems employed in the building form of structures is to transfer gravity masses effectively. the foremost common masses ensuing from the result of gravity ar loading, load and snow load. Besides these vertical masses, buildings also are subjected to lateral masses caused by wind, blasting or earthquake. Lateral masses will develop high stresses, turn out sway movement or cause vibration. Therefore, it's important for the structure to own ample strength against vertical masses along with adequate stiffness to resist lateral forces. Strengthening of structures proves to be a more robust choice business to the economic issues and immediate shelter issues instead of replacement of buildings. Hence, we all know this retrofitting and while not retrofitting structure within which economical as compared to every different structure. Therefore, seismal retrofitting or strengthening of building structures is one amongst the foremost vital aspects for mitigating seismal hazards particularly in earthquake prone areas.

1.1 BUILDING CONFIGURATIONS

Fig.1b: Elevation without Bracing

Fig.1c: Elevation with X Bracing

-98	8 8	8 8	99-	8 8	8 8	8 8
\sim	\sim	\sim	\sim	\sim	\sim	
\sim	\sim	\sim	\sim	\sim	\sim	V
\sim		\sim	\sim			<u> </u>
\sim		\sim	\sim	\sim	\sim	V
\sim						~~
\sim	$-\nabla$					V
\vee						V
X						V •••
\sim						
\sim						
\times						
\sim						
\sim						V ~~
\times						
\times						~~~
\sim			×/		×/	
Ň	- ×	~~	×/		×/	~
Ň	- Ň	Ň	Ň	Ň	Ň	× ~
Ň	- Ň	Ň	×/	Ň	×/	× ~
Ň	Ň	Ň	Ň	Ň	Ň	Ň.
Ň	Ň	Ň	Ň	Ň	Ň	Ň.
Ň	Ň	Ň	Ň	Ň	Ň	Ň.
\mathbf{N}	M	M	M	M	M	M -

Fig.1d: Elevation with V Bracing

8 8 8 8	88	8.9	8 8	88	88
$\wedge \wedge$	\wedge	\wedge	\wedge	\wedge	
	\wedge	\wedge	\wedge	\wedge	A •••
					<u> </u>
MM	M	M	M	M	
	\square				
	\square	\square		\square	
	\wedge	\square		\square	
	\square	\square			
		\wedge	N		
	\wedge	\wedge	\wedge	\sim	
	\wedge	\square	\wedge	\square	
	$\langle \rangle$		\wedge		⊷
					<u> </u>
	ΙY.	XX	K X	ΙN.	<u> </u>

Fig.1e: Elevation with inverted V Bracing

1.3. Objective of Work

The objective of the study comprises of the following:

1. Comparative study of the behavior of different type of steel bracing structures such as with and without braced, X, V and inverted V-braced in RC Buildings.

2. To perform the Response Spectrum Method of analysis on RC structures.

3. To compare the different model of RC structures with & without steel bracing system.

3. LITERATURE SURVEY

Dheeraj Dheshmukh, Amol Patil, etc al- He studied that analysis and designed eccentric bracing system in tall (G+20) steel structure with different type of lateral loading by using Staad Pro. in earthquake zone III with medium soil type. He selected the building plan size of 20mX20m along to the X & Z direction with each floors of 3m and five bays of 4m along to x and z direction. He observed that diagonal braced system have smallest displacement, inverted V braced system have less base shear as compared to without braced building structures.

I. Anusha etc al - He studied the analysis of steel building frame G+5 structure against the seismic loads and different loading conditions. He selected the six story building fame structure with three bays in lateral and horizontal direction and height of each floor was 3m and spacing between bays 8m along to horizontal while 6m along the lateral direction. He also selected different seismic parameters like seismic zone III, response reduction factor 3, importance facto 5 and damping ratio five percent. He selected two methods for analysis the structure as Equivalent static load method and response spectrum method and also checked the P-delta analysis and connection design of exterior and interior joint. He observed different results like story drift, story shear more in lateral forced method as response spectrum method and Dynamic analysis values are smaller than the lateral force method.

Rishi Mishra, Dr. Abhay Sharma, Dr. Vivek Garg - They are worked on the G+10 storey RC building framed structure with different bracing system like X bracing, K bracing, V and inverted V bracing system and compared the these structures output to the RC bared frame structures and they work done all these models on Staad Pro software to evaluate the structure of a particular type braced system in order to control the lateral displacement , forces and also observed that inverted V braced system is more economical as compared to the other braced structures.

4. METHODOLOGY

Using Etabs Software.

2. Creating Modelling of RC building without and with steel bracing system.

3. Applying property like beam, column, slab dimension and support on structure.

e-ISSN: 2395-0056 p-ISSN: 2395-0072

4. Applying Load like Dead load, Live load, seismic load and load combination as per IS code.

5. Getting Results in the form of Max Overturning Moments, Max Story Shears. Max Story Displacement, Max. Story Drifts etc.

6. Results Analysis: Graphical analysis in the term of Max Overturning Moments, Max Story Shears. Max Story Displacement, Max. Story Drifts etc.

7. Conclusion Discussion & Future Scope.

5. RESULTS AND ANALYSIS

5.1 STOREY DISPLACEMENTS

Table: 5.1.1 Storey Displacements in MODEL-I

MODEL-I WITHOUT BRACING SYSTEM STOREY ELEVATION (m) X-DIRECTION Y-DIRECTION Story24 76.8 186.378 282.433 Story23 73.6 184.795 280.388 Story24 76.8 186.378 282.433 Story23 73.6 184.795 280.388 Story22 70.4 182.549 277.296 Story21 67.2 179.62 273.149 Story20 64 176.043 267.992 Story19 60.8 171.855 261.87 Story18 57.6 167.088 254.822 Story17 54.4 161.769 246.884 Story16 51.2 155.924 238.092 Story15 48 149.578 228.483 Story14 44.8 142.76 218.099 Story13 41.6 135.494 206.979 Story14 35.2 119.703 182.677 Story10 32 111.211 169.564 </th
STOREY ELEVATION (m) X-DIRECTION Y-DIRECTION Story24 76.8 186.378 282.433 Story23 73.6 184.795 280.388 Story22 70.4 182.549 277.296 Story21 67.2 179.62 273.149 Story20 64 176.043 267.992 Story19 60.8 171.855 261.87 Story17 54.4 161.769 246.884 Story16 51.2 155.924 238.092 Story15 48 149.578 228.483 Story14 44.8 142.76 218.099 Story13 41.6 135.494 206.979 Story11 35.2 119.703 182.677 Story10 32 111.211 169.564 Story10 32 111.211 169.564
Story24 76.8 186.378 282.433 Story23 73.6 184.795 280.388 Story22 70.4 182.549 277.296 Story21 67.2 179.62 273.149 Story20 64 176.043 267.992 Story19 60.8 171.855 261.87 Story17 54.4 161.769 246.884 Story16 51.2 155.924 238.092 Story15 48 149.578 228.483 Story14 44.8 142.76 218.099 Story13 41.6 135.494 206.979 Story11 35.2 119.703 182.677 Story10 32 111.211 169.564 Story10 32 111.211 169.564 Story10 32 111.211 169.564
Story23 73.6 184.795 280.388 Story22 70.4 182.549 277.296 Story21 67.2 179.62 273.149 Story20 64 176.043 267.992 Story19 60.8 171.855 261.87 Story17 54.4 161.769 246.884 Story16 51.2 155.924 238.092 Story15 48 149.578 228.483 Story14 44.8 142.76 218.099 Story12 38.4 127.803 195.16 Story11 35.2 119.703 182.677 Story10 32 111.211 169.564 Story20 28.6 102.346 155.86
Story22 70.4 182.549 277.296 Story21 67.2 179.62 273.149 Story20 64 176.043 267.992 Story19 60.8 171.855 261.87 Story17 54.4 161.769 246.884 Story16 51.2 155.924 238.092 Story13 44.8 142.76 218.099 Story12 38.4 127.803 195.16 Story10 32 111.211 169.564 Story10 32 111.211 169.564 Story20 28.8 102.346 155.86
Story21 67.2 179.62 273.149 Story20 64 176.043 267.992 Story19 60.8 171.855 261.87 Story18 57.6 167.088 254.822 Story17 54.4 161.769 246.884 Story16 51.2 155.924 238.092 Story15 48 149.578 228.483 Story14 44.8 142.76 218.099 Story13 41.6 135.494 206.979 Story12 38.4 127.803 195.16 Story10 32 111.211 169.564 Story0 28.8 102.346 155.86
Story20 64 176.043 267.992 Story19 60.8 171.855 261.87 Story18 57.6 167.088 254.822 Story17 54.4 161.769 246.884 Story16 51.2 155.924 238.092 Story15 48 149.578 228.483 Story14 44.8 142.76 218.099 Story12 38.4 127.803 195.16 Story10 32 111.211 169.564 Story10 32 111.211 169.564 Story10 28.6 102.346 155.86
Story19 60.8 171.855 261.87 Story18 57.6 167.088 254.822 Story17 54.4 161.769 246.884 Story16 51.2 155.924 238.092 Story15 48 149.578 228.483 Story14 44.8 142.76 218.099 Story13 41.6 135.494 206.979 Story12 38.4 127.803 195.16 Story11 35.2 119.703 182.677 Story10 32 111.211 169.564 Story9 28.8 102.346 155.86
Story18 57.6 167.088 254.822 Story17 54.4 161.769 246.884 Story16 51.2 155.924 238.092 Story15 48 149.578 228.483 Story14 44.8 142.76 218.099 Story13 41.6 135.494 206.979 Story12 38.4 127.803 195.16 Story11 35.2 119.703 182.677 Story10 32 111.211 169.564 Story9 28.8 102.346 155.86
Story17 54.4 161.769 246.884 Story16 51.2 155.924 238.092 Story15 48 149.578 228.483 Story14 44.8 142.76 218.099 Story13 41.6 135.494 206.979 Story12 38.4 127.803 195.16 Story11 35.2 119.703 182.677 Story10 32 111.211 169.564 Story9 28.8 102.346 155.86
Story16 51.2 155.924 238.092 Story15 48 149.578 228.483 Story14 44.8 142.76 218.099 Story13 41.6 135.494 206.979 Story12 38.4 127.803 195.16 Story11 35.2 119.703 182.677 Story10 32 111.211 169.564 Story0 28.8 102.346 155.86
Story15 48 149.578 228.483 Story14 44.8 142.76 218.099 Story13 41.6 135.494 206.979 Story12 38.4 127.803 195.16 Story11 35.2 119.703 182.677 Story10 32 111.211 169.564 Story9 28.8 102.346 155.86
Story14 44.8 142.76 218.099 Story13 41.6 135.494 206.979 Story12 38.4 127.803 195.16 Story11 35.2 119.703 182.677 Story10 32 111.211 169.564 Story0 28.8 102.346 155.86
Story13 41.6 135.494 206.979 Story12 38.4 127.803 195.16 Story11 35.2 119.703 182.677 Story10 32 111.211 169.564 Story9 28.8 102.346 155.86
Story12 38.4 127.803 195.16 Story11 35.2 119.703 182.677 Story10 32 111.211 169.564 Story9 28.8 102.346 155.86
Story11 35.2 119.703 182.677 Story10 32 111.211 169.564 Story9 28.8 102.346 155.86
Story10 32 111.211 169.564 Story9 28.8 102.346 155.86 Story9 28.6 02.141 141.677
Story9 28.8 102.346 155.86 Story9 26.6 22.121 141.677
Str 0 25.6 02.121 141.607
Story8 25.0 95.131 141.007
Story7 22.4 83.59 126.852
Story6 19.2 73.741 111.633
Story5 16 63.595 95.982
Story4 12.8 53.15 79.922
Story3 9.6 42.395 63.474
Story2 6.4 31.25 46.649
Storyl 3.2 18.984 28.916
Base 0 0 0

Fig. 5.1.a

Table: 5.1.2 Storey Displacements in MODEL-II

MODEL-II WITH X-BRACING SYSTEM					
STOREY	ELEVATION (m)	X-DIRECTION	Y-DIRECTION		
Story24	76.8	145.966	180.449		
Story23	73.6	143.633	177.362		
Story22	70.4	140.912	173.803		
Story21	67.2	137.728	169.72		
Story20	64	134.112	165.118		
Story19	60.8	130.073	159.993		
Story18	57.6	125.618	154.344		
Story17	54.4	120.755	148.177		
Story16	51.2	115.495	141.506		
Story15	48	109.852	134.35		
Story14	44.8	103.845	126.731		
Story13	41.6	97.494	118.675		
Story12	38.4	90.82	110.213		
Story11	35.2	83.846	101.38		
Story10	32	76.6	92.219		
Story9	28.8	69.115	82.774		
Story8	25.6	61.429	73.104		
Story7	22.4	53.585	63.278		
Story6	19.2	45.63	53.382		
Story5	16	37.622	43.518		
Story4	12.8	29.641	33.809		
Story3	9.6	21.821	24.422		
Story2	6.4	14.408	15.625		
Storyl	3.2	7.705	7.938		
Base	0	0	0		

Fig. 5.1.2 Storey Displacements in MODEL-II

DISPLACEMENT IN X - DIRECTION IN mm MODEL-III WITH V-BRACING SYSTEM					
Story24	76.8	149.943	193.964		
Story23	73.6	147.801	191.057		
Story22	70.4	145.227	187.599		
Story21	67.2	142.162	183.548		
Story20	64	138.642	178.919		
Story19	60.8	134.684	173.715		
Story18	57.6	130.301	167.943		
Story17	54.4	125.505	161.614		
Story16	51.2	120.31	154.746		
Story15	48	114.731	147.36		
Story14	44.8	108.788	139.481		
Story13	41.6	102.5	131.136		
Story12	38.4	95.886	122.354		
Story11	35.2	88.966	113.166		
Story10	32	81.76	103.608		
Story9	28.8	74.295	93.719		
Story8	25.6	66.604	83.548		
Story7	22.4	58.718	73.155		
Story6	19.2	50.67	62.61		
Story5	16	42.494	51.992		
Story4	12.8	34.233	41.384		
Story3	9.6	25.964	30.89		
Story2	6.4	17.845	20.694		
Story1	3.2	9.999	11.195		
Base	0	0	0		

Fig. 5.1.4 Storey Displacements in MODEL-IV

Table:	5.1.4 Store	ev Displacer	nents in	MODEL-IV
I abic.	5.1.1 50010	y Displacel	nenes m	

MODEL-IV WITH INVERTED V-BRACING SYSTEM				
STOREY	ELEVATION (m)	X-DIRECTION	Y-DIRECTION	
Story24	76.8	147.657	186.35	
Story23	73.6	145.559	183.585	
Story22	70.4	142.994	180.22	
Story21	67.2	139.917	176.241	
Story20	64	136.369	171.671	
Story19	60.8	132.371	166.52	
Story18	57.6	127.94	160.801	
Story17	54.4	123.09	154.527	
Story16	51.2	117.835	147.72	
Story15	48	112.195	140.405	
Story14	44.8	106.189	132.61	
Story13	41.6	99.84	124.362	
Story12	38.4	93.168	115.696	
Story11	35.2	86.196	106.645	
Story10	32	78.95	97.25	
Story9	28.8	71.462	87.556	
Story8	25.6	63.769	77.62	
Story7	22.4	55.913	67.514	
Story6	19.2	47.938	57.323	
Story5	16	39.889	47.145	
Story4	12.8	31.83	37.085	
Story3	9.6	23.861	27.277	
Story2	6.4	16.175	17.941	
Story I	3.2	8.938	9.505	
Base	0	0	0	

6. CONCLUSIONS

It is seen that the maximum storey displacement 186.378 mm in X direction and 282.433 mm in Y direction at 24th storey top of the structure in the Model-I without bracing system.

It is seen that the maximum storey displacement 145.966 mm in X direction and 180.449 mm in Y direction at 24th storey of the structure and as comparing both direction in which in y direction, the displacement is found maximum in Model-II in which the building with cross (X) bracing system.

e-ISSN: 2395-0056 p-ISSN: 2395-0072

It is found that the maximum storey displacement 149.943 mm in X direction and 193.964 mm in Y direction at top of the structure in Model-III with V bracing system.

It is seen that the maximum storey displacement 147.657 mm in X direction and 186.350 mm in Y direction at top of the structure in model-IV with inverted V bracing system.

REFERENCES

- Viswanath K.G, Prakash K.B., Anant Desai, "Seismic Analysis of Steel Braced Reinforced Concrete Frames" International Journal of Civil and Structural Engineering, Volume 1, No 1, 2010
- [2] Venkatesh S.V., H. Sharada Bai., Divya S.P., "Response of a 3-Dimensional 2 X 3 Bays Ten Storey RC Frame with Steel Bracings as Lateral Load Resisting Systems Subjected To Seismic Load" International Journal of Scientific & Engineering Research Volume 4, Issue 5, May-2013.
- [3] Yogendra Singh, "Lateral Load Resisting Systems for MultiStorey Buildings" 4] M.D. Kevadkar, P.B. Kodag, "Lateral Load Analysis of R.C.C Building", International Journal of Modern Engineering Research (IJMER), Vol.3, Issue.3, May-June. 2013
- [4] Dr. Vinod Hosur, "Earthquake-Resistant Design of Building Structures", Wiley India Pvt. Ltd, New Delhi, India.
- [5] S.K.Duggal, "Earthquake Resistant Design of Structures", Oxford University Press.
- [6] IS 1893 (Part 1): 2002, "Criteria for Earthquake Resistant Design of Structures", Bureau of Indian Standards, New Delhi.