International Research Journal of Engineering and Technology (IRJET)e-Volume: 09 Issue: 06 | Jun 2022www.irjet.netp-

Design of Pre-Engineered Building (PEB) Structure

Mohd Aamir¹, Ravinder², Sheela Malik³

¹ (M.tech Scholar) 2nd year, Department of Civil Engineering, Ganga Institute of Technology and Management, Jhajjar Haryana (India) ²Assistant Professor, Department of Civil Engineering, Ganga Institute of Technology and Management,

Jhajjar Haryana (India) ³Assitant Professor, Department of Civil Engineering, Ganga Institute of Technology and Management,

> Jhajjar Haryana (India) ***

Abstract - Our project focuses on the designing of PEBs structure and the green building aspect of the structure. In India 67 million tons of food get wasted annually accounting for 92000 crores and being a developing country there will always be a need for an industrial structure for storing and other industrial activity. With the increasing demand for industrial sheds, the structures need to be designed fast and accurately. Any discrepancy and clash in the design of structure cause wastage and the use of BIM software can easily detect and solve such problems before the work even started. The PEB structure has 21,840 m3 and consists of nonprismatic members designed for bending moments at their respective nodes. The members are designed as per IS800 and connection as per AISC and IS. The project uses different software for designing such as ETABS, STAAD PRO, RAM CONNECTION and IDEASTAICA along with hand calculation following IS 875 parts 1, 2, and 3 for load calculation and IS 800

Key Words: Structure, Designing, Steel, Green Building, Pollution, wastage, BIM, Technology, software.

1. INTRODUCTION

Advances in Technology make possible to design structure more accurately with least possible clashes with other aspects of the structure. This is now possible with the help of BIM and different software interoperability. With the growing demand of industry, housing sector, need of storage units etc. The PEBs structure is intelligently design to take forces and can be constructed rapidly. The PEBs planned and members are fabricated in factory and only need to be assembled at site, this help in reducing construction time considerably. The advantage of PEB structure is that it can be constructed quickly with lesser amount of material in weight being used. As all the members are fabricated in factory and members need to be transported so it also cost lesser in transportation charges and easier to reach places that are harder to reach.

The greenhouse gases due to steel construction is lesser comparing to concrete construction and the need of framing for concreting, hydrating, and curing period is not required in steel construction. With the help of BIM and interoperability of different software to create and design structure we can reduce the wastage of material and time of construction.

1.1 OBJECTIVE & RESEARCH PROPOSAL

In the project we studied that extent of integration possible using different software's on one projects working on single point. We use ETABS to design members of structures and import the design file to STAAD Pro to design connection using RAM connection in STAAD pro. STAAD pro RAM connection only able to design generic connection inside STAAD PRO, so we used IDEASTATICA BIMLink to design connection from scratch using same design file

2. MATERIALS AND METHOD

There are various types of methods available according to the Indian Standard code –

- Limit State Method (LSM)
- Working State Method (WSM)
- Load Factor Method (LFM) or Ultimate Load Method (ULM)

Here LSM is used for member analysis.

In philosophy, LSM is such that the structure safely carries all the load over its entire life span without failing. The structure is unfit when its collapses or violates the serviceability requirement such as cracking and deflections. With the probabilistic approach design, load and design strength are determined. This philosophical method, design structure in such a way that it remains fit for its entire design life remaining within acceptable limits of safety and serviceability requirements. We use LSM methodology to design the PEB structure.

2.1 DESIGN PRINCIPLE OF LIMIT STATE METHOD

A well designed and well-planned structure has the least probability of its failure. The structure is designed based on the characteristic values of its material strengths and applied loads taking account of variation in materials property and

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 06 | Jun 2022 www.irjet.net

p-ISSN: 2395-0072

load to be supported. Design value is obtained by applying partial safety factors. The reliability of the design is expressed as

> Design Action (Qd) \leq Design Strength (S_{d}) The design action Qd is expressed as

$$Q_d = \sum_k \gamma_f Q_{ck}$$

And, the design strength Sd is obtained as

 $S_{U}=Su/\gamma_{m}$ Where, Q_{ck} = characteristic load

 S_{II} = ultimate strength

 γ_f = partial safety factor for loads.

 γ_m = partial safety factor for materials.

2.2 STRUCTURE SPECIFICATION -

Table 1 - Structure specification

01	The span of the PEB	40 m
02	Spacing of the PEB frame	7.66 m
03	Height of column	5 m
04	Length of building	91.1 m
05	Rise of the PEB	7 m
06	Slope of the roof (Θ)	10 degree
07	Length along the sloping roof	20.1 m
08	Length of each panel (c/c spacing of purlin)	7.66 m
09	Spacing of gable from PEB frame	7.42

2.3 WIND LOAD CALCULATION

Basic wind speed (Vb) = 33 m/sDesign Wind speed (V_z) is given by

> $V_Z = V_b \times K_1 \times K_2 \times K_3 \times K_4$ k1 = probability factor (risk coefficient) k_2 = terrain, height and structure size factor k3 = topography factor

k4 = Cyclonic Factor

Vz = 33 m/s

Design wind pressure $(P_Z) = 0.6 \times V_Z^2$ Design Wind Pressure, $P_d = P_Z \times K_d \times K_a \times K_c$ Wind Directionality Factor, $K_d = 0.9$

Clause 7.2.1 of IS 875 - Part 3

Area Averaging Factor, $K_a = 0.80$

Clause 7.2.2 of IS 875 - Part 3

Combination Factor, $K_c = 0.90$

Clause 7.3.3.13 of IS 875 - Part 3

 $K_d \times K_a \times K_c = 0.648 > 0.7$

Design Wind Pressure, $P_d = 0.457 \text{ KN/m2}$

Pressure Coefficients:

Area of the face = $455m^2$

Area of the opening = $44m^2$

Percentage Area of the Opening = 9.65%

Encloser condition of the building = Partially Enclosed

Enclosed	0.2
Partially Enclosed	0.5
Open	0.7

$$\frac{h}{w} = 0.125$$
$$\frac{l}{w} = 2.28$$
$$3/2 \le \frac{l}{w} \le 2$$

External Pressure Coefficient - Use table 4 from IS: 875 part 3 1987

2.4 MATERIAL REQUIRED

Section	Object Type	No of Pieces	Length	Weight
			m	kN
member_ 700mm	Beam	34	154.098	166.0928
mem_1_prismatic_ 800mm_to_700mm	Beam	22	147.3982	173.1145
member_2_prismat_ 700mm_to_900mm	Beam	22	147.3981	227.7299
Column 400mm	Column	21	138.6	133.8249
Column middle	Column	26	130	124.8399
member_3_900_to_ 700	Beam	22	73.6992	113.8653
ISMC	Beam	104	791.54	273.43
ROD50	Beam	36	366.54	16.72
ROD50	Brace	12	109.83	5.08

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 06 | Jun 2022 www.irjet.net

p-ISSN: 2395-0072

3 RESULT

Following are the design result on PEB structure

3.1 SUPPORT REACTION

Table 3 - Support reaction

	Horizontal		Vertical	Moment KN-m		
	Fx kN	Fz kN	Fy kN	Mx	Му	Mz
Max Fx	88.44	0.084	130.07	0	0	0
Min Fx	-88.43	0.083	130.10	0	0	0
Max Fy	0	0.001	313.436	0	0	0
Min Fy	-0.04	-4.61	-6.452	0	0	0
Max Fz	-0.015	14.723	21.973	0	0	0
Min Fz	-0.024	-14.73	36.62	0	0	0
Max Mx	20.784	0.056	48.817	0	0	0
Min Mx	20.784	0.056	48.817	0	0	0
Max My	20.784	0.056	48.817	0	0	0
Min My	20.784	0.056	48.817	0	0	0
Max Mz	20.784	0.056	48.817	0	0	0
Min Mz	20.784	0.056	48.817	0	0	0

3.2 BEAM END FORCES

Table 4 - Beam End Forces

	Fx kN	Fy kN	Fz kN	Mx kN-m	My kN-m	Mz kN- m
Max Fx	313.436	0	0.001	0	0	0
Min Fx	-14.427	-0.017	0.149	-1.2	1.498	-0.215
Max Fy	57.543	158.13	0	- 0.001	-0.004	523.103
Min Fy	57.543	- 158.13	0	0.001	-0.004	523.105
Max Fz	0.839	4.892	5.04	0.038	-7.611	3.625
Min Fz	2.139	8.111	-5.04	- 0.038	9.273	9.017
Max Mx	0.697	6.392	2.116	1.923	8.024	3.288
Min Mx	0.957	-3.791	- 2.116	- 1.923	9.442	-0.124

Max My	0.418	3.837	- 0.406	1.409	14.448	1.97
Min My	0.699	6.372	0.408	- 1.409	-14.64	3.28
Max Mz	57.543	- 158.13	0	0.001	-0.004	523.105
Min Mz	150.85	72.991	0	0	0	- 364.957

3.3 DISPLACEMENT

Table 5 - Displacement

	X mm	Y mm	Z mm	Resulta nt mm	rX rad	rY rad	rZ rad
Max X	9.62 7	- 14.42	- 0.127	17.339	0	0	- 0.00 1
Min X	- 9.62	- 14.42	- 0.128	17.34	0	0	0.00 1
Max Y	- 5.56 8	2.513	0.012	6.109	0	0	0
Min Y	2.65	-24.5	-0.03	24.657	0	0	- 0.01
Max Z	0.00 3	- 0.037	29.56 1	29.561	0.00 4	0.00 2	0
Min Z	0.00 4	- 0.061	- 29.83 6	29.836	-0	-0	0
Max rX	1.2	- 10.48 7	5.231	11.781	0.04 6	0.00 5	- 0.00 1
Min rX	1.20 2	- 10.50 2	- 5.268	11.81	- 0.05	- 0.01	- 0.00 1
Max rY	0	0	0	0	0.00 1	0.05 1	- 0.00 1
Min rY	0	0	0	0	0.00 1	- 0.05	0.00 1
Max rZ	0.90 7	- 9.266	- 0.036	9.311	0	0	0.00 4
Min rZ	- 0.91	- 9.264	- 0.036	9.309	0	0	- 0.00 4
Max Rst	0.00 4	0.061	- 29.83 6	29.836	-0	-0	0

International Research Journal of Engineering and Technology (IRJET)e-ISSN: 2395-0056Volume: 09 Issue: 06 | Jun 2022www.irjet.netp-ISSN: 2395-0072

Chart 1 – Tabulated plot Coordinates of Displacement

3.4 CONNECTION DESIGN

Some of the connection are -

3.4.1 Apex Connection -

Fig 1 – Apex type connection detail diagram

Members		
Configuration		
Is apex	:	Yes
Vertical angle (deg)	:	0
Right beam		
Beams		
Beam type	:	Tapered
member		
Beam section :	Taper_7	,
Beam initial height	:	699.999 mm
Beam final height	:	699.999 mm
Beam length :	3.35 m	
Beam material	:	
STEEL_275_NMM2		
Moment - Flange and web welded	l	
Beam side		
Top flange weld type :	Fillet	
Top beam flange weld:	E70XX	
D1: Weld size to top beam flan	nge (1/1	6in) :
4		
Bottom flange weld type	:	Fillet
Bottom beam flange weld	:	E70XX
D3: Weld size to bottom beam	ı flange	
(1/16in)	:	4
Welding electrode to beam we	b: E70XX	X
D2: Weld size to beam web		

	:	3
:	25.4	mm
	:	A36
	:	: 25.4 :

3.4.2 PURLIN CONNECTION

Material Steel - E 165 (Fe 290) Project item - Purlin Connection Design Name - Purlin connection Analysis - Stress, strain/loads in equilibrium

Table 6 – Load effects (forces in equilibrium)

Name	Mem	N	Vy	Vz	Mx	Му	Mz
LE1	M1	- 126.6	0.1	- 121	0	106.6	0
	M2	0.1	0	0	0	0	0
LE2	M1	- 141.8	0.1	-91	0	47.1	0
	M2	0.1	0	0	0	0	0

Table 7 - Summary of purlin connection result

Name	Value	Check status
Analysis	100.00%	ОК
Plates	0.0 < 5.0%	ОК
Welds	0.6 < 100%	ОК
Buckling	Not calculated	

Fig 2 – Purlin connection

Fig 3 – Purlin connection equivalent stress check for load LE1

3.4.3 APEX CONNECTION

Fig 4 – Apex connection detail

Members				
Configuration				
Is apex	:	Yes		
Vertical angle (deg)	:	0		
Right beam				
Beams				
Beam type	:	Tapered	l membe	r
Beam section	:	Taper_7		
Beam initial height	:	699.999) mm	
Beam final height	:	699.999) mm	
Beam length	:	3.35 m		
Beam material	:	STEEL_2	275_NMN	42
Moment - Flange and we	b welded	l		
Beam side				
Top flange weld type	:	Fillet		
Top beam flange weld	l:	E70XX		
D1: Weld size to top b	beam flar	nge (1/1	6in):	4
Bottom flange weld ty	rpe	:	Fillet	
Bottom beam flange v	veld	:	E70XX	
D3: Weld size to botto	om beam	flange (1/16in):	4
Welding electrode to	beam we	b	:	E70XX
D2: Weld size to bear	n web (1	/16in)	:	3
Connecting plate				
tp: Thickness		:	25.4 mm	1
Material		:	A36	

3.4.4 BEAM COLUMN FLANGE CONNECTION

Fig 5 – Beam Column Flange (BCF) connection type

Members			
Configuration			
Is apex :	Yes		
Vertical angle (deg)	:	0	
Right beam			
Beams			
Beam type	:	Tapered	member
Beam section :	Taper_7		
Beam initial height	:	699.999	mm
Beam final height	:	699.999	mm
Beam length :	3.35 m		
Beam material	:	STEEL_2	275_NMM2
Moment - Flange and we	b welded	l	
Beam side			
Top flange weld type	:	Fillet	
Top beam flange weld:		E70XX	
D1: Weld size to top h	beam flar	nge (1/16	6in): 4
Bottom flange weld ty	rpe	:	Fillet
Bottom beam flange v	veld	:	E70XX

L

Volume: 09 Issue: 06 | Jun 2022

www.irjet.net

p-ISSN: 2395-0072

D3:	Weld size to bott	om bean	n flange (1/16in): 4
Wel	ding electrode to	beam we	eb:	E70XX
D2:	Weld size to bear	n web (1	/16in):	3
Conn	ecting plate			
tp: 1	Thickness	:	25.4 mr	n
Mat	erial	:	A36	

Members

Configuration	
Exists opposite connection:	No

Beam

:	Taper_7
:	STEEL_275_NMM2
:	699.999 mm
:	699.999 mm
:	6.7 m
:	5.711
er:	No
	: : : : : er:

Column

General Support section Taper_2 : Support material Support initial dep Support final dept

	:	STEEL_275_NMM2
pth	:	749.999 mm
th	:	399.999 mm
	:	5 m

End plate

Support length

Connector				
Plate extension:	Extend	Extended external edge		
Width	:	203.2 mm		
tp: Plate thickness	:	6.35 mm		
Plate material	:	A36		
Fy : 0.248 k	xN/mm2			
Fu : 0.4 kN/mm2				
Hole type on plate : Standard (STD)				
Flush extension length: 25.4 mm				
Plate alignment : Vertical alignment				

Weld

External flange weld type:	Fillet		
Weld to external flange:	E70XX		
D1: Weld size to external flan	ge (1/16	in):	3
Internal flange weld type	:	Fillet	
Weld to internal flange	:	E70XX	
D3: Weld size to internal flan	ge (1/16	in):	3
Web weld : E70XX			
D2: Weld size to web (1/16in):	3	
Bolts			

tp: Connection plate thickness	ss:	6.35 mm
Bolts: 1/2" A325 N		
g: Gage - transverse c/c spac	ing:	139.7 mm
Hole type : Standa	rd (STD)	
Lev: Vertical edge distance	:	31.75 mm
Leh: Horizontal edge distanc	e :	31.75 mm
Bolt group (external extension	ı)	
pfo t: Distance from bolt rows	s to flange	e: 31.75 mm
Bolt group (external flange)		
Bolts rows number :	1	
pfi t: Distance from bolt rows	to flange	: 31.75 mm
Bolt group (internal flange)		
Bolts rows number :	1	
		04 55

pfi b: Distance from bolt rows to flange: 31.75 mm

Fig 7 - Beam Column Flange (BCF) connection detail

eners				
:	PL 12.7x76.2x7	27.65		
:	Yes			
:	727.649 mm			
bs: Transverse stiffeners width: 76.2 mm				
cc: Corner clips : 19.05 mm				
ts: Transverse stiffener thickness: 12.7 mm				
:	AS_Class 4.6			
:	Fillet			
Welding electrode to support : AS E41XX				
D: Weld size to support (1/16 in) :				
	eners : :se stiffer ips se stiffen : : trode to : to suppo	eners PL 12.7x76.2x7 Yes 727.649 mm se stiffeners width: ips : 19.05 r se stiffener thickness: AS_Class 4.6 Fillet trode to support : to support (1/16 in)		

3.4.5 BRACING CONNECTION

Fig 8 – Bracing connection

ISO 9001:2008 Certified Journal

International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 09 Issue: 06 | Jun 2022 www.irjet.net

Members

Existing members		
Right beam :	No	
Left beam :	No	
Upper right brace	:	Yes
Upper left brace	:	No
Lower left brace	:	No
Lower right brace	:	No
Align beams to top eo	dge:	No
Bracing cleat assemb	ly:	No
Column		
General		
Column section	:	Taper_2
Column material	:	STEEL_275_NMM2
Column orientation	:	Transversal
Is column end	:	No

Upper right brace

General					
Section	:	Cir 0.05	5_0		
Material	:	Q345			
Slope angle	(degrees)):	33.11		
Additional v	ertical fo	rce:	0 kN		
Additional ge	ometric	data			
wpx: WP ho	orizontal	displace	ment:	0 mm	
wpy: WP ve	rtical dis	placeme	nt:	0 mm	
Le: Minimur	n distanc	e to othe	r membe	ers:	25 mm
Le1: Left dis	tance	:	25 mm		
Le2: Right d	istance	:	25 mm		

Interfaces	
Upper right brace	
Gusset	
General	
tg: Thickness:	20 mm
Material :	E 250 A
LV: Length on colum	n: 324.458 mm
Gusset-to-Brace connec	ction
General	
Connection type:	Bolted
Bolts :	M_20 G8_8
Hole type :	STD
Hole type on gusset	: STD
np: Number of rows	of bolts longitudinally: 2
nc: Number of lines	of bolts transversely: 1
sp: Longitudinal bol	t spacing : 70 mm
ae1: Longitudinal di	stance to edge: 45 mm
ae3: Transverse dist	ance to edge: 45 mm
Material :	E 250 A
t: Thickness:	5 mm
Setback :	20 mm
Weld :	E 49
Weld size :	5 mm
Weld length :	100 mm
Weld clearance:	5 mm

Gusset-to-Column connection

General		
Connection type to a	colum	n: Directly welded
Directly welded		
Welding electrode	:	E 49
Weld size :	6	mm

3.4.6 BASE PLATE

Members

Column		
Section	:	Taper_2
Material	:	STEEL_275_NMM2

International Research Journal of Engineering and Technology (IRJET)e-ISSN: 2395-0056Volume: 09 Issue: 06 | Jun 2022www.irjet.netp-ISSN: 2395-0072

Longitudinal offset:0 mmTransversal offset:0 mm

Connector

Base plate		
Connection type	:	Unstiffened
Position on the suppo	rt:	Center
N: Depth :	460 mm	l
D: Gross width	:	610 mm
tp: Thickness :	6 mm	
Material :	E 250 A	
Column weld :	E 41	
s: Column weld size	:	3 mm
Override A1/A2 ratio	:	No
Shear key type	:	None
Support		

With pedest	al	:	No	
Longitudina	l dimens	ion	:	2500 mm
Transversal	dimensi	on	:	2500 mm
Thickness	:	500 m	m	
Material	:	M40		
Include grou	uting	:	No	
Cover	:	70 mm	l	
Anchor				

Anchor position	:	Transve	ersal posi	ition
Rows number per sid	e	:	1	
Anchors per row	:	2		
Longitudinal edge dis	tance on	the plate	e:	50 mm
Transverse edge dista	ance on t	he plate	:	50 mm
Head type :	Hexago	nal		
Include lock nut	:	No		
Anchor :	M-8			
Effective embedment	depth	:	150 mm	ı
Total length :	166.56	mm		
Material :	Class 8.	8		
Fy : 640 N/1	mm2			
Fu : 800 N/1	mm2			
Splitting Failure	:	No		
Cracked concrete	:	No		
Non-ductile steel	:	No		
Fasteners welded to l	base plat	e:	No	
Lever arm :	No			

Anchor supplementary reinforcement

Tension reinforcement:	No
Shear reinforcement :	No

Fig 11 – Base plate connection

3.5 RENDER VIEW

Fig 12 - Render view of the PEB structure by STAAD pro

3.6 SHEAR DIAGRAM OF THE STRUCTURE

Fig 13 - Shear diagram of the structure

DISCUSSION -

We are able to design the structure and connection by codal provision and preliminary data. With the use of Etabs and Staad Pro we designed members of the structures and

connection with the help of RAM connection and IdeaStatica. The data of model is transferred from one software to other with help of IFC file or plugins. Both the methods for transferring the data isn't completely successful in our case and some of the members need to redesign for further designing.

CONCLUSION -

The structure is prefabricated and it is only assembled on the site. The structure is pre planned according to the site conditions, wind conditions, earthquake forces, MEP loads and temperature stresses. Once the planning of structure is completed, the member is fabricated in the factory and assembled on the site requiring lesser time and fewer man power. Accuracy The member and connection are designed specifically for each node and use of Ram connection and Ideastatica connection can designed the connection to highest accuracy. The software designed file can be shared with various software using plugin. The file shared contain designed data from parent software which can now integrate with other data on other software like Revit to create highly accurate 3d Model. Low wastage the PEBs structure after designing is fabricated in a factory part by part and only requisite amount of material is cut from bigger sheet of rolls to form a fabricated member of a PEB and the scraps from the sheets can be collected for recycling.

- The structure is prefabricated and it is only assembled on the site.
- The structure is pre planned according to the site conditions, wind conditions, earthquake forces, MEP loads and temperature stresses.
- Once the planning of structure is completed, the member is fabricated in the factory and assembled on the site requiring lesser time and fewer man power.
- Accuracy The member and connection are designed specifically for each node and use of Ram connection and Ideastatica connection can designed the connection to highest accuracy.
- The software designed file can be shared with various software using plugin.
- The file shared contain designed data from parent software which can now integrate with other data on other software like Revit to create highly accurate 3d Model.

REFERENCES

 Geeta Mehta, Bidhan Sharma and Anuj Kumar, (2016) Optimization of Member Size and Materials for Multistoried RCC Buildings using ETABS

- [2] T.Subramani and K.Murali (2018) Analytical Study of Tall Building with Outtrigger System with Respect to Seismic and Wind Analysis Using ETABS
- [3] Guangfeng Wang (2014) Research on ETABS Steel Tower a Top Building Structural System
- [4] K. Surender Kumar, N.Lingeshwaran, Syed Hamim Jeelani (2020) Analysis of residential building with STAAD. Pro & ETABS
- [5] Yonghe Wua, Jianchun Mub, Shengqiang Lic and Huifeng Xi (2011) Dynamic Response Analysis on Steel-Concrete Composite Frame Based on ETABS
- [6] Yongwei SHAN, Paul GOODRUM, Carl HAAS, and Carlos CALDAS (2012) Assessing Productivity Improvement of Quick Connection Systems in the Steel Construction Industry Using Building Information Modeling (BIM)
- [7] Nitin K. Dewani, Sanjay Bhadke (2018) STUDY OF PRE-ENGINEERED BUILDING, IRJET
- [8] Mr. Vaibhav Thorat, Mr. Samyak Parekar 2022 Pre Engineering Building as a Modern Era: A Review, IJRASET
- [9] Mitaali Jayant Gilbile, S. S. Mane (2020) A Review on Comparative Study on the Structural Analysis and Design of Pre-Engineered Building [PEB] with Conventional Steel Building [CSB], IJERT
- [10] <u>Angela Acree Guggemos</u>, A.M.ASCE; and <u>Arpad</u> <u>Horvath</u>, A.M.ASCE (2005) Comparison of Environmental Effects of Steel- and Concrete-Framed Buildings

BIOGRAPHIES

Mohd Aamir, M.Tech, Department of Civil Engineering, Ganga Institute of Technology and Management, Jhajjar Haryana, (INDIA) Email.Id: aamir.ahmed433@gmail.com

Ravinder, Assistant Professor, Department of Civil Engineering, Ganga Institute of Technology and Management, Jhajjar Haryana, (INIA) Email.Id: ravinderpanwar7043@gmail.com

Sheela Malik, Assistant Professor, DepartmentD of Civil Enginnering, Ganga Institute of Technology and Management, Jhajjar Haryana, (INDIA) Email.Id: sheelamalik2209@gmail.com