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Abstract - The rechargeable lithium-ion battery has been 
extensively used in mobile communication and portable 
instruments due to its many advantages, such as high 
volumetric and gravimetric energy density and low self-
discharge rate. Early detection of inadequate performance 
facilitates the timely maintenance of battery systems. This 
reduces operational costs and prevents accidents and 
malfunctions. Prognostic and health management (PHM) can 
ensure that a lithium-ion battery is working safely and 
reliably. The main approach of the PHM evaluation of the 
battery is to determine the state of health (SoH) and state of 
charge (SOC) of the battery.  This paper presents the 
preliminary development of the data-driven prognostic, using 
an LSTM (RNN) approach to predict the SoH and SoC of the 
lithium-ion battery. The effectiveness of the proposed 
approach was assessed in a case study using a battery dataset 
from NASA's Ames Prognostics Center of Excellence (PCoE) 
database. The proposed LSTM algorithm was compared 
against other machine learning based on the RMSE value. The 
experimental results reveal that the performance of the LSTM 
algorithm could either match or outweigh other machine 
learning algorithms. 
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1. INTRODUCTION 

 Li-ion batteries are playing a crucial role in the fields of 
renewable energy systems and electric vehicles. Batteries 
hold the potential to transform the transportation sector, 
which now emits considerable volumes of CO2. They also 
provide a solution to the intermittent energy powered by 
solar and wind generators, assisting in the viability of these 
green solutions. However, batteries may not be the clean 
energy solution they seem at face value. Obtaining resources 
for batteries, such as lithium, has become an environmental 
issue[1]. The reliability of these systems depends on a 
battery management system (BMS) which monitors the state 
of charge (SoC) and state of health (SoH) effectively[2]. 
Knowing the SoH of a battery in advance enhances the 
system's reliability. The proposed SoH estimation method is 
simulated in Python using the LSTM algorithm by 

considering the ageing factors such as temperature, 
charge/discharge rates, and depth of discharge[3]. 

2. SOC AND SOH ESTIMATION 

 Due to the restricted manufacturing process, the actual full 
capacity of a new battery may differ from the nominal 
battery capacity claimed by the manufacturer. As a result, a 
new battery's original maximum capacity, Qf, is calculated by 
averaging the full capacities of multiple 
charging/discharging cycles. When a battery begins a cyclic 
charging/discharging operation, the inevitable aging will 
lead to performance deterioration, with a decrease in the 
maximum chargeable or releasable capacity, QM, which is 
acquired by cumulating the battery charges either from an 
empty-to-full or full-to-empty operation[5]. The "state of 
health" of a battery describes the difference between an 
examined battery and a new battery, taking into account cell 
ageing. It's the ratio of a battery's maximum charge to its 
rated capacity[6].  

 

For an aged battery, the capacity fading causes not only a 
decrease in the maximum releasable capacity but also a 
mistake in SOC estimation. The state of charge of a battery 
describes the difference between a fully charged battery and 
the same battery in use. It is associated with the remaining 
quantity of electricity available in the cell[6]. It is calculated 
by dividing the battery's remaining charge by the maximum 
charge the battery can produce. 

 

3. DATA SET  

The lithium-ion battery data employed in the prognostics 
analysis of this work was retrieved from the NASA Ames 
Prognostics Center of Excellence (PCoE) data repository[4]. 
This dataset contains the test results of commercially 
available lithium-ion 1850-sized rechargeable batteries, and 
the experiments have been performed under controlled 
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conditions in the NASA prognostics testbed. The dataset 
contains the test results of commercially available lithium-
ion 1850-sized rechargeable batteries. A set of four Li-ion 
batteries (# 5, 6, 7, and 18) were run through three different 
operational profiles (charge, discharge, and impedance) at 
room temperature. Charging was carried out in a constant 
current (CC) mode at 1.5A until the battery voltage reached 
4.2V and then continued in a constant voltage (CV) mode 
until the charge current dropped to 20mA. Discharge was 
carried out at a constant current (CC) level of 2A until the 
battery voltage fell to 2.7V, 2.5V, 2.2V, and 2.5V for batteries 
5, 6, 7, and 18 respectively. Impedance measurement was 
carried out through an electrochemical impedance 
spectroscopy (EIS) frequency sweep from 0.1Hz to 5kHz. 
Repeated charge and discharge cycles result in accelerated 
ageing of the batteries, while impedance measurements 
provide insight into the internal battery parameters that 
change as ageing progresses. The experiments were stopped 
when the batteries reached end-of-life (EOL) criteria, which 
was a 30% fade in rated capacity (from 2Ahr to 1.4Ahr). The 
various parameters in the data set consist of charge, 
discharge, and impedance fields. 

3.1 Data Analysis  

The following data set was parsed in Python 3.9 using the     
SciPy library and the following characteristics were 
observed during charge and discharge of Battery no.5 across 
a total of 164 cycles. Graphs were plotted at intervals of 30 
cycles to get a clear idea of the distinct nature of the 
characteristics with the passing cycles. 

3.1.1 Charging Characteristics 

Charging was carried out in a constant current (CC) mode 
at 1.5A until the battery voltage reached 4.2V, which is the 
threshold voltage, and then continued in a constant voltage 
(CV) mode until the charge current dropped to 20mA. The 
voltage measured across the battery increases slowly in each 
cycle. However, because the battery cannot maintain its 
initial voltage value with each cycle, we observe a variation 
in the starting level of the voltage (as after one complete 
cycle of discharge, some amount of energy is stored within 
the battery).The charging voltage is slightly greater than the 
current measured due to some drop assumed. The amount of 
time taken for fully charging the battery is a specific time (1 
hr) after the battery enters the CV mode of charging, usually 
when the current reaches 10 percent 

                                                                                                                                                

 

Chart -1: Voltage measured Vs Time while charging 
(Battery No. 5) 

 

Chart -2: Current measured Vs Time while charging 
(Battery No. 5) 

3.1.2 Discharging Characteristics 

      The battery was discharged at a constant current (CC) of 
2A until the voltage dropped to 2.7V. Since the battery's 
capacity is 1.9Ahr, the battery is discharged at 1.1C in this 
situation. In the graphs shown below, we observe that with 
the passing of cycles, the rate of discharge increases, 
suggesting that the cut-off voltage is reached sooner, which 
is an indication that the battery is getting older. Once the cut-
off voltage is reached, the battery cannot be discharged any 
further as it's critical for the battery's longevity. Discharging 
of a battery takes place when the battery is connected across 
the load. The voltage across the load is slightly less due to 
the drop across the circuit and battery back emf with a 
constant current of 2A applied throughout. 
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Chart -3: Measured measured Vs Time while discharging 
(Battery No. 5) 

       
 Chart -4: Current measured Vs Time while discharging 

(Battery No. 5) 

4. HARDWARE IMPLEMENTATION  

Assembly of hardware equipment was initially problematic 
because to the COVID-19 outbreak, but once the college 
reopened, hardware was installed to validate the data 
obtained from our study paper, which we referred to for 
benchmark results. This was achieved by charging and 
discharging 18650 Li-ion batteries with identical 
specifications (nominal voltage 3.7V, peak voltage 4.2V, 
ampere-hour capacity 2000mAh) using LabVIEW software 
and NI-Modules. 

4.1 Working 

     Charging was carried out in a constant current (CC) mode 
at 1.3A until the battery voltage reached 4V and then 
continued in a constant voltage (CV) mode until the charge 

current dropped to 19mA. Discharge was carried out at a 
constant current (CC) level of 1A until the battery voltage fell 
to 2.7V, 2.5V, 2.2V, and 2.5V for the battery[8]. The current 
sensor is always in series with the battery. Therefore, a close 
resemblance was observed between the practically 
performed data and the theoretically observed data in the 
datasheet mentioned in our chosen research paper. The data 
was acquired by connecting the chassis to the LabVIEW 
using the laptop interface. An electronic load was used to 
carry out the discharging of the battery, and probes from NI 
modules across the battery were connected to measure the 
voltage. A current sensor was connected in series to the 
battery to measure the current and was calibrated using the 
Arduino Uno. A K-Type Thermocouple was placed over the 
battery with the help of insulation tape for accurate 
measurement of the battery temperature[9]. For charging, a 
calibrated charger was dismantled and the phase and neutral 
terminals were directly inserted into the supply charging 
slots. Data for charging or discharging cycles was 
continuously monitored in the LabVIEW at a frequency of 1 
Hz until the end of the cycle. The challenges faced while 
executing the hardware were that the LabVIEW could only 
acquire data from one NI-Module at a time, which led to us 
performing different cycles for the measurement of voltage 
and temperature for their respective NI-Modules to get the 
readings for a single cycle[10]. The data was acquired and 
proved to be authentic as it followed the ideal (theoretical) 
charging and discharging traits. 

 

Fig -1: Hardware setup for generating real-time data 

4.2 Block Diagram  

 

Fig -2: block diagram for charging cycle 
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Fig -3: Block diagram for discharging cycle 

4.3 Result  

The following parameters were captured during the charging 
and discharging of the batteries, 

i. The voltage rose from the nominal voltage of 3.7V to 
4V, 4.1V during charging, and then fell to 2.7V, 
which was the cut-off voltage during 
discharging. 

ii. The current was drawn using a constant electronic 
load of 1A during discharging at 0.5C. While 
charging, it follows the CC-CV protocols where 
first the charging takes place at a constant 
current of 1.3A till the voltage rises from the 
nominal voltage of 3.7V to 4.2V, after which the 
current starts to fall, till it reaches 50 milliamps. 

iii. The temperature at which the entire setup was 
being performed was 32°C room temperature or 
ambient temperature. We observed that with 
the rise of current, the temperature gradually 
rose from 32°C to a small amount of 34°C at its 
peak current and then the temperature 
subsided gradually. But the temperature rise 
during discharging was rapid as a constant 
current of 1 ampere was being absorbed by the 
load continuously, which led to a rise in 
temperature to 36°C. 

 

 

Fig -4: Data acquisition of charging Setup 

 

Fig -5: Data acquisition of discharging Setup 
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5. MACHINE LEARNING ALGORITHMS 

Machine learning algorithms are good at handling data that 
is multidimensional and multivariate, and they can do this in 
dynamic or uncertain environments. As ML algorithms gain 
experience, they keep improving in accuracy and efficiency. 
This lets them make better decisions. Say you need to make a 
weather forecast model. As the amount of data, you have 
keeps growing, your algorithms learn to make more accurate 
predictions faster [7]. There is a lot of scope in ML to become 
the top technology in the future[4]. The reason is that it has a 
lot of research areas in it. This helps us improve both 

hardware and software. 

5.1 Proposed ML algorithm LSTM 

Long Short-Term Memory networks – usually just called 
“LSTMs” – are a special kind of Recurrent Neural Network, 
Capable of learning long-term dependencies. They were 
introduced by Hochreiter Schmidhuber (1997) and were 
refined and popularized by many people. They work 
tremendously well on a large variety of problems and are 
now widely used[11]. 

 

Fig -6: LSTM block diagram 

Recurrent networks can, in principle, use their feedback 
connections to store representations of recent input events 
in the form of activations (weights). This is potentially 
significant for many applications, including speech 
processing, non-Markovian control, and music composition. 
Although theoretically fascinating, existing methods do not 
provide clear practical advantages over backdrops in 
feedforward nets with limited time. With conventional 
“Back-Propagation Through Time" or “Real-Time Recurrent 
Learning", error signals flowing backwards in time tend to 
either (1) blow up or (2) vanish the temporary 
backpropagated error. This may affect the model and bring 
about the following consequences: Case (1) may lead to 
oscillating weights. Case (2): Learning to bridge long time 
lags takes a prohibitive amount of time or does not work at 
all. In conjunction with an appropriate gradient-based 
learning algorithm, this paper presents "Long Short-Term 
Memory" (LSTM), a novel recurrent network architecture in 
conjunction with an appropriate gradient-based learning 
algorithm. LSTM is designed to overcome these error back-
flow problems. It can learn to bridge time intervals over 
1000 steps, even in the case of noisy, incompressible input 
sequences, without loss of short time lag capabilities. This is 

achieved by an efficient, gradient-based algorithm. LSTM 
outperforms and also learns to solve complex, artificial tasks 
no other recurrent algorithm has solved before. The other 
advantages of using LSTM are as follows: - For long time lag 
problems, LSTM can handle noisy distributed 
representations and continuous values. In contrast to finite-
state automata or hidden Markov models, LSTM does not 
require an a priori choice of a finite number of states. In 
principle, it can deal with unlimited state numbers. There 
appears to be no need for parameter fine-tuning. LSTM 
works well over a broad range of parameters such as 
learning rate, input gate bias, and output gate bias. Positions 
of widely separated, relevant inputs in the input sequence do 
not matter. The LSTM algorithm updates complexity per 
weight and time step [12]. LSTM is local in both space and 
time. 

 

 

5.2 Reason for not Implementing SoC Estimation 

Precise measurements of SOC are necessary to ensure safe 
operation while maximizing the use of battery capacity. In 
early applications, people found that the battery SOC had a 
strong linear relationship with the open-circuit voltage 
(OCV). To measure the accurate OCV, the battery needs 
hours to rest. While in most conditions, accurate OCV is 
unlikely to be obtained and is mainly not a method 
considered in the case of finding a soc for lithium-ion 
batteries. Due to the various internal and external 
conditions, fixed mathematical transformations cannot be 
accurate. The coulomb counting method (CCM) is another 
straightforward method that has the advantage of simple 
computation and easy implementation. CCM is widely 
recommended for battery health management. However, 
CCM is calculated by charge and discharge current time 
integral, which is unable to eliminate cumulative error and is 
very sensitive to the initial value. If the initial SOC value is 
inaccurate, it will affect all estimates and the error will 
accumulate during the whole estimation process. The initial 
SoC value is usually predicted and is not verified to be 100% 
accurate. The large amount of data makes it even more 
difficult for the model to give an accurate SOC value[14]. 

6. SOH MODELLING USING LSTM 

In this section, an analysis of battery No. 06, No. 07, and No. 
18 degradation datasets taken from the NASA Ames 
Prognostics Center of Excellence (PCoE) database was 
conducted to evaluate the effectiveness of the developed 
LSTM technique. The dataset of battery No. 05 was employed 
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as a training dataset. A detailed description of the 
experimental data has been provided. The SoH experimental 
results from the conventional DNN and developed LSTM 
model will be presented. An LSTM-RNN network is trained 
to model the complex battery dynamics under varying 
ambient temperatures. A step-by-step searching method is 
presented to determine the optimal network hyper-
parameters for SOH modelling[13]. The network well learns 
the battery dynamics, presents good robustness against 
unknown initial states and provides satisfying SOH 
estimations under varying temperatures. There are natural 
recursive linkages between current SOC and past inputs, as 
illustrated by the Coulomb counting approach. An LSTM-
RNN network is therefore constructed to model the temporal 
dependencies of the input layer, battery current, terminal 
voltage, and ambient temperature to form the input vector. 
Since it is necessary to calculate the SoH of the battery, as 
this is the data that will be predicted using the LSTM model, 
a theoretical calculation of SOH was performed in Python 
based on the formula given below: 

 

- where,  

           represents the maximum practical capacity 
as measured from the operating battery at the current time.  

              represents the rated capacity from battery 

manufacturers. Theoretical value of SoH of all the batteries 
was calculated and plotted in the graph showing the aging 
process of the battery[15]. 

According to the README file of the dataset, the data is 
stored in several ".mat" files. Each file corresponds to a 
specific battery, and the data structure of each file contains 
the parameters mentioned in the above section. For the 
LSTM model proposed in Section V, it is only necessary to 
collect the data related to the discharge of the battery. For 
this, a function is created in Python that is in charge of 
reading this data from the ".mat" file and storing it in 
memory in two pandas Data Frames for later access. After 
loading the dataset, a description of the data is made using 
pandas functions to verify if the data loading was correct. 

 

 

Fig -7: Dataset after formatting and parsing 

 

Chart -5: Actual SoH vs cycles 

6.1 Training phase for calculating SoH 

The dataset is prepared in such a way that it can be used by 
TensorFlow during the training phase; two structures are 
constructed corresponding to the predicted input and 
output. For the input data, the relevant characteristics of the 
dataset are filtered, which are: 

• Battery capacity 

• Voltage 

• Current 

• Temperature 

• Charging voltage 

• Charging current 

• Instant of time (from the start of the download) 

For the output data, the SoH of the battery is calculated and, 
in both input and output cases, the values are normalized to 
a range of values between [0] and [1]. For the preparation of 
the model, four dropout layers, one dense layer, and one of 
the ADAM types are used as optimizers. About 50 epochs are 
used for training the model. 
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Fig -8: LSTM model created from training data-set 

6.2 Testing to check the correctness of the model 

The information (or data) of the test batteries, namely 
Battery No. 6, Battery No. 7, and Battery No. 18, was loaded 
to test the model's correctness. The root of the mean square 
error, as well as the true SoH and the SoH predicted by the 
network, were calculated in a table. In addition, a plot of 
cycles vs. SoH for each of the three batteries was created. 

 

Chart -6: Battery No. 6 

 

Chart -7: Battery No. 7 

 

Chart -8: Battery No. 18 

6.3 Result  

In this experiment, the discharge data for all 164 cycles from 
battery No. 5 were employed. The SoH was calculated from 
the initial capacity as being 1.9 AHr. The result is considered 
to be a long-term SoH estimation of the battery. The 
following graphs show the performance of battery no. 6, 7, 
and 18 using a complex DNN algorithm (LSTM). The x-axis 
represents the cycles, and the y-axis represents the SoH. The 
blue line in the plot represents the actual SoH and the orange 
line represents the predicted SoH by the model. 

        It is clearly shown in the figures that due to the accurate 
fitting of the trained DNN model with batteries no. 6, 7 and 
18, the LSTM model is successfully built and the RMSE of the 
SoH estimated by the proposed model is much less as 
compared to other traditional machine learning algorithms.   

Table -1: RMSE of the SoH estimation by using LSTM and 
traditional machine learning algorithms 

RMSE 

K-NN LR SVM ANN DNN LSTM 

5.598 4.558 4.552 4.611 3.427 2.406 

 

      Considering the results illustrated above, it is also 
important to note that the results from battery No. 06 
performed slightly worse when compared to battery No. 07 
and 18. This could be due to the ageing pattern of battery No. 
06 being slightly different from the training dataset. 

      Furthermore, as compared to the other batteries, the 
results for battery No. 06 had a wider distribution. The 
results from the table given below show that, overall, the 
proposed LSTM algorithm outperformed all the traditional 
machine learning algorithms, including the standard DNN 
method. LSTM performed better, in terms of capturing the 
RMSE value. 
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       Absolute errors measured the mean absolute value of the 
difference between the elementwise inputs. The absolute 
error formula used as the loss function can be expressed by 
the following equation: 

 

Where, yi and are, respectively, the predicted data and the 
input data of each iteration or epoch i, and k is the number of 
iterations or epochs. In this experiment, the total number of 
epochs was set to 200. 

7. CONCLUSIONS 

This work aims to develop an LSTM model to predict the 
state of health of lithium-ion batteries. This experiment has 
achieved its goal of aiding, as a benchmark, the prognostic 
data-driven model for battery data using machine learning 
algorithms. Based on the results from the case studies, it 
shows that the LSTM algorithm provides a promising 
outcome for predicting and modelling prognostic data, 
especially in the battery prognostic and health management 
applications. Also, based on several advantages of data-
driven models over the traditional physics-based models and 
the accuracy achieved, we believe that the traditional 
physics-based model may be replaced by data-driven models 
soon, in various fields and applications. This future trend of 
data-driven models is in line with the recent achievement of 
deep learning algorithms and artificial intelligence. These 
methodologies are believed to be the main approaches in the 
further development of data-driven models. However, the 
accuracy of prediction and the higher performance of using 
deep learning algorithms also come with the drawback of 
higher computational time. With rapid advancements in 
technology, the computational time could be substantially 
reduced. The future direction of this work will focus on 
developing a hybrid-deep learning model that could be 
universally applicable to multiple types of prognostic data. 
Due to time constraints and inaccessibility of the lab 
equipment, it was not feasible to create an entire dataset of 
the battery as acquiring an entire dataset would take 
approximately (170×4) 680 hours. Hence, there is 
uncertainty in predicting the whole nature of the battery’s 
operation based on a couple of charge-discharge cycles. 
However, it was found that in the practically performed 
cycles, all the charging/discharging protocols were observed 
quite accurately. 
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