

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3091

Denial of Service Attacks in Software Defined Networking - A Survey

Sreejesh N. G.1, Sabina M. A.2

1P G Scholar, Department of Computer Science and Engineering,
Rajiv Gandhi Institute of Technology, Kottayam, Kerala, India

2Assistant Professor, Department of Computer Science and Engineering,
Rajiv Gandhi Institute of Technology, Kottayam, Kerala, India

---***---
Abstract - The word Software Defined Networks (SDN)
came into limelight only a few years ago. But it has become the
backbone for various popular network technologies such as
data centers, cloud storage, mobile communication, Internet of
Things and even in small business environments, thanks to the
flexibility, programmability, scalability and centralized
coordination that brings to the entire network. Even though
the introduction of SDN brought easiness in network
management, it is susceptible to all the attacks that may
happen in the traditional network. One such common attack is
saturation attack, means saturating the network resources
using malformed packets. In happens in two forms; Denial of
Service attacks and Distributed Denial of Service attacks.
Many proposals have been brought since the evolution of SDN
to detect and mitigate these attacks. This survey brings an
overview of some of such proposals, their effectiveness and
possible comparisons.

Key Words: Software Defined Networking, saturation
attacks, DoS, DDoS, IoT, control plane, data plane, OpenFlow,
northbound and southbound interfaces.

1. INTRODUCTION

The evolution of network has gone through different phases
before reaching the fully connected world. The traditional
networking scenario uses routers as the backbone of the
network paradigm. Apart from it, gateways and switches
make their specific roles wisely. Transfer a packet of data
from a source to destination needs proper end to end
connectivity and through this connection, physical or logical,
packets are travelled. This transfer needs proper routing and
forwarding. The traditional network does this task in a
fantastic manner with the help of different protocols and
addressing schemes. The problem arises when some
functionalities of the intermediate network need to be
changed. This brings a tedious thing because; most of the
functionalities are fixed into the network devices. Changing
the functionality require changing the whole or part of the
network devices. This causes headache both practically and
economically. Here comes the role of Software Defined
Networking (SDN).

A network device can have a data plane to forward the
incoming packets, a control plane to manage and control the

internal processing of the device, such as creating the routing
table, executing specific algorithms etc, and an application
plane to access the device either for monitoring the device,
managing the control plane by the administrators or
executing business specific applications. In the traditional
network components such as routers and switches, the
control plane and the data plane are in a combined form. If
the network does not need any change, this form is good
method. But as the network technology advances more
functionality and changes need to be incorporated. Hence the
control plane must be separated from the data plane, as it is
the control plane which needs reformation every time.

2. BACKGROUND

The SDN technology separates the control plane from the
data plane [1][10][14]. The data plane devices are simply
forwarding devices. The control plane is mostly a powerful
system to which the data plane devices are connected directly
or indirectly. This system is called the SDN controller. The
control plane functionalities are programmed into the SDN
controller. This is why the SDN is aid to be a programmable
network. One major duty of the controller is to instruct the
forwarding device what to do with the incoming packets.
Since the most common action is forwarding the packets, this
device can be considered as a special type of switch. The
application plane (otherwise called management plane)
mostly lies on the controller itself, or it may be in a system
directly accessible to the controller. The applications are used
to monitor the network and its various parameters, business
specific functionalities or as administrative access path to the
controller. The architecture of SDN is shown in Fig. 1 [14].

The interface between the data plane and the control
plane is called the southbound interface. The forwarding
devices communicate with the controller through this
interface. The packets that flow through this interface are
generally packet-in messages, packet-out messages and flow
modification messages. The interaction need to follow some
protocols for effective communication. The protocol used in
the southbound interface is the OpenFlow protocol [2][3].
The OpenFlow follows an event based way of communication.
The switches that follow the OpenFlow protocol are called
OpenFlow Switches, which forms the data plane of the SDN
architecture.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | Jun 2022 www.irjet.net p-ISSN: 2395-0072

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | Jun 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3092

The interface between the control plane and the
application plane is called the northbound interface. The
protocol in this interface varies with the APIs used in the
interface, and hence there is no specific protocol in this
interface.

Fig -1: SDN Architecture

The features that highlights the SDN from traditional
network comprises of its ability to program the network
without changing any of the forwarding device. Any policies
or functionalities that need to be added or changed can be
done in the controller through programs, which will take
effect in the whole network. This will save huge effort in
changing the network infrastructure to implement the
change. Another feature is the fine grained access control
bases on the policies assigned by the SDN controller. This is
highly useful in IoT based environments as they do not have
in-built access control mechanisms in their light weight
devices [11][12].

2.1 Working of SDN

The core component in the OpenFlow switch is the flow
table. It is a huge table containing two major fields; match
field and corresponding action field. The match table can
contain parameter that can be checked with the incoming
packets. If any match occurs, the corresponding action is
taken. Some common actions are; forwarding the packet to a
specified port, drop the packet, etc. The flows will have
priorities so that the matches with higher priorities are
checked first. If no match is there, it is called a table-miss.
Then the default action is taken, which is to forward the
packet to the controller, encapsulating it in a message called
packet-in message. On getting he packet-in message, the
controller unwraps it and decides what is to be done with
that packet. The packet is then sent back to the switch putting
it into a packet-out message, along with an action for this
packet. The controller may then send a flow rule to that
switch specifying the match and action for the similar packets
that may come in the future so that when the packet comes
later to the switch, it will create a table-hit and the packet

need not be sent to the controller, saving the bandwidth in
between.

The SDN controller runs code for handling the packet-in
messages and other event-messages. Examples of such
controller code/softwares are RYU [4], POX [5], NOX [6],
Floodlight [7] etc. Most of the controller softwares are open
in nature so that developers are free to modify it or add more
functionalities as desired.

2.2 Attacks in SDN

The major feature and at the same time the most
prominent vulnerability of the SDN is its centralized control.
This weakness is used by the attackers to act upon the
controller to perish the entire network. Most attacks in
traditional network is applicable to SDN too [8][9][10].
Saturation attack is the major SDN aimed attack. Here the
major areas of SDN aimed attacks are the switch, the link
between the controller and the switch, and the controller
itself. Exhausting the resources in all the three will result in
denial of services to the hosts connected to the network.
Hence it is a type of Denial of Service (DoS) attack. It is
possible for attackers to create a botnet by including more
zombie systems into the attack scenario and hence this can
lead to Distributed DoS (DDoS) attack.

In a (D)DoS attack, the attacker creates spoofed packets
and flood them into the switch. These will be queued up at
the switch causing a lot of table miss and thereby lot of
packet-in message to the controller. Hence, the switch
resources will get exhausted and the link between the switch
and the controller filled with useless packet-in messages. The
controller on the other hand will unwrap each of this, try to
find action for it which will go in vain. It will tell the switch to
flood these packets and create useless entries in the flow
table. Thus the controller CPU time and memory also get
wasted. The packets who suffer are the benign packets which
cannot reach the switch or the controller and the service for
its user is denied.

3. ATTACK DETECTION AND MITIGATION

As DoS attacks can happen in any networks, so is in SDN.
Here the difference is that the attacks can be host-aimed or
SDN-aimed. The host-aimed attacks are possible in all
networks in dependent of whether it is legacy [14] or SDN
based [8][9][10].

TCP connections are heavier than other connection less
protocols as there are different handshakes and table
managements as far as a normal host is considered. Most TCP
attacks use SYN flags to exhaust the TCP connection tables of
the target. To solve this type of attack, the controller can act
as a proxy by managing a table of active TCP states as seen in
Avant-Guard [16]. Thus the flows can be classified into those
which complete the handshake and those which do not.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | Jun 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3093

Based on this, it can create flow rules to manage the flows
which do not complete the TCP handshakes.

Apart from TCP, other protocols can also create attacks
especially UDP and ICMP. All the attacks will cause a disaster
to the networks and need to be detected with the combined
action of the switch and the controller. NEOD describes this
scenario and a remedy [17]. But this must not increase the
CPU load of the controller and the switch.

Sometimes the network operating system (NOS) itself can
be created with primary focus to prevent attacks that may
happen to the controller by compartmentalizing the network
applications so that the services would work in side
sandboxes and does not cause much problems to the
network. Rosemary [18] is designed with such a view. Hence
it is possible to say that the OS is application-centric rather
than flow-centric.

One of the common methods is to first detect the presence
of any attack and mitigate it by means of different algorithms.
This detection and mitigation strategy is used by many
researchers in their own methods such as FloodGuard [19],
SGuard [20], Flokeeper [22], SDNGuard [24] and
FloodDefender [25] . Whenever an attack starts, the switches
will be getting overwhelmed. To overcome such situation, the
general ideas are either to divert the packets to somewhere
else, say neighbor switches [25] without losing the inport
information, or to store the packets temporarily in a cache for
later processing [19][20][24]. But using the additional cache
for packet storage is practically very difficult. Also it needs
extra cost to add the additional hardware cache. Classifying
the packets into benign and illegal is another tedious thing.
Different classifiers are used for this such as SVM [25], Self
Organizing Maps [20], etc. In small networks, this will not
take much time, but when the network grow bigger in size,
the real time classification must not take much time as it may
cause severe packet transfer delay. Another method of
finding the attack is the anomaly detection in the network
[23]. Maddu et. al. uses a probabilistic model for such
classification [24].

When the number of spoofed packets increases at switch,
this will increase the number of packet-in messages to the
controller. Thus the switch-controller link will get busier and
this this may lead to link saturation. Hence by monitoring the
link bandwidth, it is possible to detect the presence of
flooding at the switch and there by predict the attack [21].
The prediction will not be crisp as the network behaviour can
be changed at any time. Thus only a fuzzy model is feasible in
predicting the future bandwidth utilization and thereby the
chance of attack.

Most of the alleviation methods are focused on the
controller. Recently experiments are being happened to
provide some sort of intelligence to the openflow switches
too, so that they can do more than just forwarding the packet

based on the flow table. Such an initiation is the Data Plane
Development Kit (DPDK) that consists of libraries installed in
the switch to accelerate packet processing and for efficient
computing. Based on the DPDK the attack detection can be
made faster by processing each packet in a very speedy way.
Newer methods such as DPDK based DDoS Detection
frameworks [26] are based on such packet processing. With
this the attack detection happens at the data plane itself and
mitigation at the control plane.

 One of the difficult attacks to mitigate is the Low Rate
attack, which occurs as spikes at random interval of time. To
identify such attacks different methods need to be combined
and collaborated. Tang et. al. has introduced a model for
classification based on performance and features of the traffic
[27]. It combines both machine learning and flow frequency
analysis.

 A comparison of some of the previous proposals are
shown in table 1.

Table -1: Comparison of Different Methods

Proposal Protocols
Additional
Hardware

Controller

AvantGuard [16] TCP No POX

FloodGuard [19] All Yes POX

SGuard [20] All Yes NOX

BWManager [21] All No Floodlight

DAISY [23] All No RYU

SDNGuard [24] All Yes POX

FloodDefender
[25]

All No RYU

3.1 Security Issues in SDN IoT

The SDN can be introduced as the backbone of the IoT
network, so that the controller will get an entire view on the
whole IoT topology [28][29]. The sensor data packets can be
inspected by the controller and know the complete attributes
of the packets. This enables the controller to manage the IoT
network in a finer level.

IoT architecture also is not escaped from DoS attacks.
With spoofed flood and junk value packets, the sink devices
may get overwhelmed and the valuable sensor packets
cannot reach the sink, causing DoS situation. As SDN can

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | Jun 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3094

handle the devices and packet flow in a granular way,
different proposals have been introduced by implementing
SDN into IoT environment. Some are just to fine tune the data
flow and some lightly approaches the security aspects also.
Common attacks that may happen to an IoT network include
malware injection, DDoS attacks, spoofing/masquerading and
man-in-the-middle attack [12]. As in data centers and clouds,
DoS and DDoS attacks in the IoT environment may lead to
failure of collecting sensor data and there by hindering the
intended services to be run at the proper time. The attacks
may happen from inside or outside the IoT network. This can
be controlled by limiting the access to authenticated devices
only and controlling the access of network services in a pre-
defined manner. This is possible using SDN.

 Z. Qin et. al. [31] proposed MINA which uses the
programmability and flow control feature of the SDN. It
focuses on Network Services and scheduling flows. The
network services are provided as programmable features and
SDN's inherent flow table mechanism is used for scheduling
flows. This resists the illegal flows in the network and
thereby reducing the chance of DoS attacks. But, there is no
mentioning about which devices has to access the network
and which services are allowed for them. IoTPot and IoTBox
[30] are some sort of honey pot and sand boxing methods to
trap the attacker and there by stopping it from generating a
DoS attack. An entropy based method in [32] finds anomaly in
the packet flow by constantly monitoring the data flow and
thereby detects and mitigates the illegal packets. On larger
IoT networks of heterogeneous devices, clusters of devices
can be formed, which are managed by one SDN controller for
each cluster and all the cluster controllers can be coordinated
by a master controller [33]. Here the cluster controllers will
classify the abnormal flows using anomaly detection through
Support Vector Machine (SVM) and will report to the master
controller. The master will decide the actions/flow rules to
manage and control the flows in the network. Krishnan P et.
al. [34] proposed a loosely coupled integration scheme and
tightly coupled integration scheme. In the former, the
controller apps take care of the attacks whereas the latter
does the detection through the switch and its security
controller.

3.2 Implementation of Proposals

To implement and test the proposals, setting up a hardware
environment is very costly. Hence the researchers use an
emulator tool called “Mininet” [35][36][37] for creating the
wired and wireless setup. It is highly scalable and powerful
so that it can create virtual hosts and Open Virtual Switches.
The hosts are provided with terminals to access its
functionality and the switches are as powerful as the real
ones. With specific tools such as Scapy [38][39][40] and
hping [41], benign and spoofed traffic can be created inside
the network. Performance of the systems such as bandwidth
and throughput can be measured using iperf [42] like

utilities. The controller can be from a list of choices such as
RYU, POX, NOX, Floodlight etc.

4. CONCLUSIONS

This paper provides a brief overview of DoS attacks in SDN
and some mitigation measures proposed for various
contexts such as data warehouses and IoT environments. As
the controller is the key element in SDN, any attempt which
causes hindrance to the controller or the link to the
controller will decrease the functionality of the network,
sometimes destroying the entire communication. It can be
seen that the measures against DoS attacks are well suited
for DDoS attacks too. The measures reveal that the attack
mitigation is possible through speculative and efficient
management of resources and prompt and accurate
classification of illegal packets from benign ones.
Furthermore, this paper brings the methodology used in the
preventive measures, the features they used and the
limitations they bear. Each new method tries to overcome
the gap found in the previous ones. Overall, a researcher can
use this summary to well prepare for finding new methods
to detect and mitigate DoS and DDoS attacks in more
effective ways.

REFERENCES

[1] Kirkpatrick, Keith. “Software-defined networking.”
Communications of the ACM 56.9 (2013): 16-19. M.
Young, The Technical Writer’s Handbook. Mill Valley,
CA: University Science, 1989.

[2] N. McKeown et al., “OpenFlow: Enabling innovation in
campus net-works,” ACM SIG-COMM Comput. Commun.
Rev., vol. 38, no. 2,pp.69–74, Mar. 2008.

[3] OpenFlow Switch Specification [online]
https://opennetworking.org/wpcontent/uploads/2014
/10/openflow-switch-v1.3.5.pdf

[4] RYU SDN Framework [online] https://ryu-sdn.org/

[5] Kaur, Sukhveer, Japinder Singh, and Navtej Singh
Ghumman. “Network programmability using POX
controller.” ICCCS International conference on
communication, computing & systems, IEEE. Vol. 138.
sn, 2014.

[6] Gude, Natasha, et al. “NOX: towards an operating system
for networks.” ACM SIGCOMM computer communication
review 38.3 (2008): 105-110.

[7] Floodlight Controller [online]
https://floodlight.atlassian.net/wiki/spaces/floodlightc
ontroller/overview

[8] Chica, Juan Camilo Correa, Jenny Cuatindioy Imbachi,
and Juan Felipe Botero Vega. “Security in SDN: A

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | Jun 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3095

comprehensive survey.” Journal of Network and
Computer Applications 159 (2020): 102595.

[9] Ahmad, Ijaz, et al. “Security in software defined
networks: A survey.” IEEE Communications Surveys &
Tutorials 17.4 (2015): 2317-2346.

[10] Benzekki, Kamal, Abdeslam El Fergougui, and Abdelbaki
ElbelrhitiElalaoui. “Software-defined networking (SDN):
a survey.” Security and communication networks 9.18
(2016): 5803-5833.

[11] Flauzac, Olivier, et al. “SDN based architecture for IoT
and improvement of the security.” 2015 IEEE 29th
international conference on advanced information
networking and applications workshops. IEEE, 2015.

[12] Karmakar, Kallol Krishna, et al. “SDN-enabled secure IoT
architecture.” IEEE Internet of Things Journal 8.8
(2020): 6549-6564.

[13] Das¸, Resul, Abubakar Karabade, and Gurkan Tuna.
“Common network attack types and defense
mechanisms.” 2015 23nd signal processing and
communications applications conference (siu). IEEE,
2015.

[14] Kreutz, Diego, et al. “Software-defined networking: A
comprehensive survey.” Proceedings of the IEEE 103.1
(2014): 14-76.

[15] Abdullaziz, Osamah Ibrahiem, Li-Chun Wang, and Yu-Jia
Chen. “HiAuth: Hidden authentication for protecting
software defined networks.” IEEE Transactions on
Network and Service Management 16.2 (2019): 618-
631.

[16] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-
GUARD: Scalable and vigilant switch flow management
in software-defined networks,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur. (CCS), 2013, pp. 413–
424.

[17] S. Song, S. Hong, X. Guan, B.-Y. Choi, and C. Choi, “NEOD:
Network embedded on-line disaster management
framework for software defined networking,” in Proc.
IFIP/IEEE Int. Symp. Integr. Netw. Manage. (IM), May
2013, pp. 492–498.

[18] Shin, Seungwon, Yongjoo Song, Taekyung Lee, Sangho
Lee, Jaewoong Chung, Phillip Porras, Vinod
Yegneswaran, Jiseong Noh, and Brent Byunghoon Kang.
“Rosemary: A robust, secure, and high-performance
network operating system.” In Proceedings of the 2014
ACM SIGSAC conference on computer and
communications security, pp. 78-89. 2014.

[19] H. Wang, L. Xu, and G. Gu, “FloodGuard: A DoS attack
prevention extension in software-defined networks,” in
Proc. 45th Annu. IEEE/IFIP Int. Conf. Dependable Syst.
Netw., Jun. 2015, pp. 239–250.

[20] Wang, Tao, and Hongchang Chen. “SGuard: A lightweight
SDN safeguard architecture for DoS attacks.” China
Communications 14, no. 6 (2017): 113-125.

[21] Wang, Tao, Zehua Guo, Hongchang Chen, and Wei Liu.
“BWManager: Mitigating denial of service attacks in
software-defined networks through bandwidth
prediction.” IEEE Transactions on Network and Service
Management 15, no. 4 (2018): 1235-1248.

[22] S. Gao, Z. Li, B. Xiao, and G. Wei, “Security threats in the
data plane of software-defined networks,” IEEE Netw.,
vol. 32, no. 4, pp. 108–113, Jul. 2018.

[23] Imran, Muhammad, Muhammad Hanif Durad, Farrukh
Aslam Khan, and Haider Abbas. “DAISY: A detection and
mitigation system against denial-of-service attacks in
software-defined networks.” IEEE Systems Journal 14,
no. 2 (2019): 1933-1944.

[24] Maddu, Jeevan Surya, Somanath Tripathy, and Sanjeet
Kumar Nayak. “SDNGuard: An Extension in Software
Defined Network to Defend DoS Attack.” In 2019 IEEE
Region 10 Symposium (TENSYMP), pp. 44-49. IEEE,
2019.

[25] Gao, Shang, Zhe Peng, Bin Xiao, Aiqun Hu, Yubo Song,
and Kui Ren. “Detection and Mitigation of DoS Attacks in
Software Defined Networks.” IEEE/ACM Transactions
on Networking 28, no. 3 (2020): 1419-1433.

[26] Varghese, Josy Elsa, and Balachandra Muniyal. “An
Efficient IDS Framework for DDoS Attacks in SDN
Environment.” IEEE Access 9 (2021): 69680-69699.

[27] Tang, Dan, et al. “Performance and Features: Mitigating
the Low-Rate TCP-Targeted DoS Attack via SDN.” IEEE
Journal on Selected Areas in Communications 40.1
(2021): 428-444.

[28] Tayyaba, Sahrish Khan, et al. “Software defined network
(sdn) based internet of things (iot) a road ahead.”
Proceedings of the international conference on future
networks and distributed systems. 2017.

[29] Flauzac, Olivier, et al. “SDN based architecture for IoT
and improvement of the security.” 2015 IEEE 29th
international conference on advanced information
networking and applications workshops. IEEE, 2015.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 06 | Jun 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 3096

[30] Pa, Yin Minn Pa, et al. “IoTPOT: Analysing the Rise of IoT
Compromises.” 9th USENIX Workshop on Offensive
Technologies (WOOT 15). 2015.

[31] Qin, Zhijing, et al. “A software defined networking
architecture for the internet-of-things.” 2014 IEEE
network operations and management symposium
(NOMS). IEEE, 2014.

[32] Galeano-Brajones, Jesus, et al. “Detection and mitigation
of dos and ddos attacks in iot-based stateful sdn: An
experimental approach.” Sensors 20.3 (2020): 816.

[33] Bhunia, Suman Sankar, and Mohan Gurusamy. “Dynamic
attack detection and mitigation in IoT using SDN.” 2017
27th International telecommunication networks and
applications conference (ITNAC). IEEE, 2017.

[34] Krishnan, Prabhakar, Jisha S. Najeem, and Krishnashree
Achuthan. “SDN framework for securing IoT networks.”
International Conference on Ubiquitous
Communications and Network Computing. Springer,
Cham, 2017.

[35] Mininet Walkthrough [online]
http://mininet.org/walkthrough/

[36] De Oliveira, Rogerio Leao Santos, et al. “Using mininet
for emulation and prototyping software-defined
networks.” 2014 IEEE Colombian conference on
communications and computing (COLCOM). Ieee, 2014.

[37] Fontes, Ramon R., et al. “Mininet-WiFi: Emulating
software-defined wireless networks.” 2015 11th
International Conference on Network and Service
Management (CNSM). IEEE, 2015.

[38] Rohith, R., Minal Moharir, and G. Shobha. “SCAPY-A
powerful interactive packet manipulation program.”
2018 international conference on networking,
embedded and wireless systems (ICNEWS). IEEE, 2018.

[39] Biondi, Philippe. “Scapy: explore the net with new eyes.”
Technical report, Technical report, EADS Corporate
Research Center (2005).

[40] Scapy [online] https://scapy.net/

[41] hping3 [online] https://linux.die.net/man/8/hping3

[42] iperf [online] https://iperf.fr/iperf-doc.php

BIOGRAPHIES

Sreejesh N. G. is a P. G. Scholar of
Computer Science and Engineering
at Rajiv Gandhi Institute of
Technology, Kottayam, Kerala,
India. He has completed his B.Tech
in Computer Science and
Engineering. His areas of interest
include Computer Networks, SDN
and Network Security.

Sabina M. A. is an Assistant
Professor in the Department of
Computer Science and Engineering
at Rajiv Gandhi Institute of
Technology, Kottayam, Kerala,
India. She has completed her
M.Tech in Computer Science and
Engineering. She has more than 5
years of experience as Lecturer
and her areas of interest include
Computer Networks and Machine
Learning.

