Comparative Study on Seismic and Wind forces on RCC Structure

Mohammed Muneeruddin Khan¹, Chandra Gupta Nanna², Amgoth Akhila³ Adepu Neha⁴

¹Assistant Professor, TKR Engineering College, Hyderabad, ²Assistant Professor, TKR Engineering College, Hyderabad, ³Student, TKR Engineering College Hyderabad, ⁴Student, TKR Engineering College Hyderabad, ***

Abstract – This paper gives the comparative study on seismic and wind forces on G+10 RCC Residential building. The results are taken from the Major Project done by the students. The Seismic and wind forces parameters are selected for Hyderabad city, Telangana state. Planning is done by AutoCAD software. Analysis and Design is done by STAAD PRO Software. The footing is designed as Mat Footing using STAAD PRO Foundation. The parameters like design of corner and mid columns are compared. Maximum nodal displacement is compared. Footing soil pressure, reinforcement and base pressure is compared.

Key Words: Seismic force, Wind Force, Base shear, deflection, Bending Moment.

1. INTRODUCTION

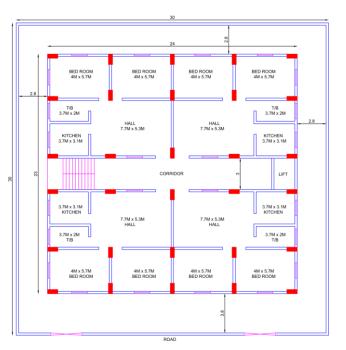
In this study the analysis and design has been done for G+10 Residential building. The plan of the building is kept same for both the studies. For distinguishing two studies the following cases will be referred:

Case-I: For seismic forces with load combination of 1.2(DL+LL±EQ).

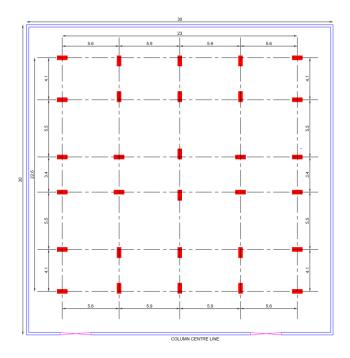
Case-II: For wind forces with load combination of 1.2(DL+LL±WL)

DL: Dead Loads IS875 Part-I LL: Live Loads IS875 Part-II WL: Wind Loads IS875 Part-III EQ: Earthquake Loads IS1893

Both Wind load and Earthquake loads are lateral loads. Wind is a constant force and Earthquake is an instantaneous force.

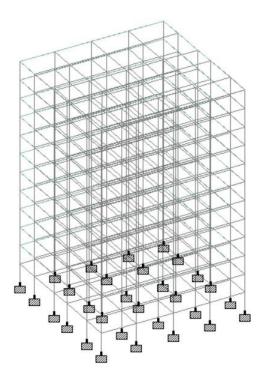

The magnitude of Wind load depends on height of building, Velocity of wind and the amount of Surface area the wind attacks.

The magnitude of earthquake load depends on mass of structure, stiffness of the structural system and the acceleration of surface of earth.

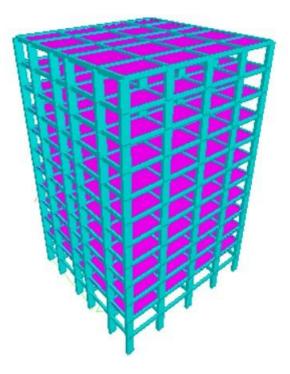

Damping will be considered in seismic forces calculations. Under normal conditions damping is not considered in Wind force calculations.

The soil type has effect on Seismic forces but not on Wind forces.

2. ARCHITECTURAL PLAN (Case I & II)



3. COLUMN CENTRELINE (Case I & II)



4. STAAD PRO MODELLING (Case I & II)

IRJET

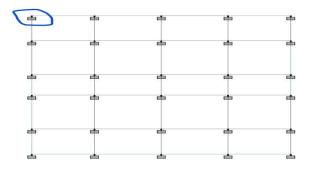
5. STAAD PRO 3D MODEL (Case I & II)

6. ANALYSIS AND DESIGN PARAMETERS

Table -1CASE – I (DL+LL+EQ)

GENERAL DATA	
Plot Area	900m ²
Built up Area	552m ²
Number of storeys	G+10
Foundation depth	3m
Typical Floor Height	3m
Grade of Concrete	M25
Grade of Steel	Fe550
Size of Column	400x1000mm
Size of Beams	230x500mm
Footing type	Mat Footing
Floor Finish Load	1Kn/m ²
Member loads (Wall loads)	12Kn/m ² (Exterior)
	6Kn/m ² (Interior)
	3Kn/m ² (Parapet)
Live Load	2Kn/m ²
SEISMIC PARAMETERS	
Seismic Zone	II
Zone Factor	0.1
Response Reduction Factor	3
Importance Factor	1
Damping Ratio	0.05

Table -2 CASE - II (DL+LL+WL)


GENERAL DATA	
Plot Area	900m ²
Built up Area	552m ²
Number of storeys	G+10
Foundation depth	3m
Typical Floor Height	3m
Grade of Concrete	M25
Grade of Steel	Fe550
Size of Column	400x1000mm
Size of Beams	230x500mm
Footing type	Mat Footing
Floor Finish Load	1Kn/m ²
Member loads (Wall loads)	12Kn/m ² (Exterior)
	6Kn/m ² (Interior)
	3Kn/m ² (Parapet)
Live Load	2Kn/m ²
WIND PARAMETERS	
Vb Basic wind speed	44m/s
Vz Design wind speed	= Vb*K1*K2*K3
K1 Risk coefficient	1
K2 Terrain height factor	1.12
(Category-2)	
K3 Topography factor	1
Pz Design Wind Pressure	0.6*Vz ²

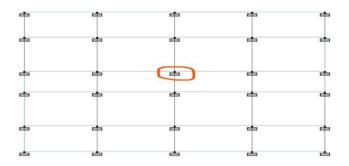
International Research Journal of Engineering and Technology (IRJET)e-Volume: 09 Issue: 07 | July 2022www.irjet.netp-I

e-ISSN: 2395-0056 p-ISSN: 2395-0072

7. CORNER COLUMNS COMPARISION

Corner Column GF for Case-I

Corner Column 10th floor Case-I


Corner Column GF for Case-II

Corner Column 10th floor Case-II

poo	11		Design Load		Design Paramet	er
			Load	8	Fy(Mpa)	550
Þ	4		Location	End 1	Fc(Mpa)	25
		1.000	Pu(Kns)	6409.96	As Reqd(mm ²)	8568
L	4	1.000	Mz(Kns-Mt)	14.95	As (%)	2.41
0			My(Kns-Mt)	55.34	Bar Size	32
				.	Bar No	12

8. MID COLUMNS COMPARISION

Mid Column GF for Case-I

Mid Column 10th floor for Case-I

Mid Column GF for Case-II

Mid Column 10th floor for Case-II

e-ISSN: 2395-0056 p-ISSN: 2395-0072

9. MAXIMUM NODAL DISPLACEMENT

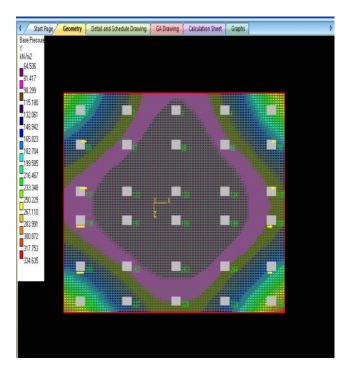
Node Displacement Summary

CASE - I

	Node	LIC	X	Y	Z	Resultant	rX	rY	rZ
			(mm)	(mm)	(mm)	(mm)	(rad)	(rad)	(rad)
Max X	386	7:1.2(DL+LL+E	22.344	-15.818	0.111	27.376	0.001	0.000	-0.000
Min X	386	2:EQ-X	-18.554	-0.242	-0.001	18.556	-0.000	-0.000	0.000
Max Y	61	3:EQ +Z	-0.001	0.291	18.709	18.711	0.000	0.000	0.000
Min Y	386	8:1.2(DL+LL+E	0.080	-16.458	22.560	27.926	0.001	0.000	-0.000
Max Z	325	8:1.2(DL+LL+E	-0.176	-7.198	22.562	23.683	0.001	-0.000	0.000
Min Z	61	4:EQ-Z	<mark>0.001</mark>	-0.291	-18.709	18.711	-0.000	-0.000	-0.000
Max rX	356	8:1.2(DL+LL+E	-0.004	-12.101	13.065	17.809	0.001	-0.000	-0.000
Min rX	342	4:EQ-Z	-0.000	0.138	-4.728	4.730	-0.001	-0.000	0.000
Max rY	325	7:1.2(DL+LL+E	21.140	-7.545	0.123	22.446	0.001	0.000	-0.000
Min rY	130	7:1.2(DL+LL+E	21.140	-7.545	-0.123	22.446	-0.001	-0.000	-0.000
Max rZ	351	2:EQ-X	-7.865	-0.171	-0.000	7.866	-0.000	-0.000	0.001
Min rZ	286	7:1.2(DL+LL+E	9.058	-4.425	-0.009	10.081	0.000	0.000	-0.001
Max Rst	386	8:1.2(DL+LL+E	0.080	-16.458	22.560	27.926	0.001	0.000	-0.000

	N. I	1/0	N I	N I					
	Node	L/C	X	Y	Z	Resultant	rX	rY	rZ
			(mm)	(mm)	(mm)	(mm)	(rad)	(rad)	(rad)
Max X	191	7:1.2(DL+LL+V	30.979	-4.870	-0.039	31.359	-0.000	0.000	-0.000
Min X	195	2:WL-X	-25.652	0.271	-0.001	25.654	-0.000	-0.000	0.00
Max Y	58	3:WL +Z	0.000	0.368	29.471	29.474	0.000	-0.000	-0.00
Min Y	386	8:1.2(DL+LL+V	0.064	-16.181	30.903	34.883	0.001	0.000	0.00
Max Z	63	8:1.2(DL+LL+V	0.000	-5.134	36.057	36.421	0.000	-0.000	0.00
Min Z	388	4:WL-Z	0.000	0.368	-29.906	29.908	-0.000	0.000	-0.00
MaxrX	13	8:1.2(DL+LL+V	0.000	-1.439	8.049	8.177	0.002	-0.000	-0.00
Min rX	338	4:WL-Z	0.000	0.159	-6.728	6.730	-0.001	0.000	-0.00
MaxrY	126	7:1.2(DL+LL+V	28.802	-6.480	-0.129	29.522	-0.001	0.000	-0.00
Min rY	321	7:1.2(DL+LL+V	28.802	-6.480	0.129	29.522	0.001	-0.000	-0.00
MaxrZ	150	2:WL-X	-6.956	0.142	-0.001	6.958	-0.000	-0.000	0.00
Min rZ	146	7:1.2(DL+LL+V	8.337	-2.024	0.001	8.579	-0.000	0.000	-0.00
Max Rst	128	8:1.2(DL+LL+V	0.000	-7.779	35.981	36.812	0.000	-0.000	-0.00

10. FOOTING SOIL PRESSURE


4 Start Page Geometry Detail and Schedule Drawing GA Drawing Calculation Sheet Graphs Base Press kN/m2 76.829 90.860 104.891 118.923 132.954 146.996 161.017 175.049 183.080 203.112 217.143 231.175 245.206 259.237 273.269 287.300 301.332

CASE-II

CASE-I

e-ISSN: 2395-0056 p-ISSN: 2395-0072

11. FOOTING REINFORCEMENT

CASE-I

Longitudinal Bottom -0.169 0.000 22.703 -1818.991 3663.549 201 Transverse Top 3.492 0.000 24.500 602.366 1800.000 201		X (m)	Y (m)	Z (m)	Moment (kN-m/m)	Area Reqd. (sq. mm)	Load Case
Transverse Top 3.492 0.000 24.500 602.366 1800.000 201	Longitudinal Top	25.000	0.000	15.966	673.549	1800.000	201
	Longitudinal Bottom	-0.169	0.000	22.703	-1818.991	3663.549	201
Transverse Bottom -0.169 0.000 22.703 -1740.789 3520.444 201	Transverse Top	3.492	0.000	24.500	602.366	1800.000	201
	Transverse Bottom	-0.169	0.000	22.703	-1740.789	3520.444	201
							L

CASE-II

	X (m)	Y (m)	Z (m)	Moment (kN-m/m)	Area Reqd. (sq. mm)	Load Case
ongitudinal Top	19.508	0.000	24.600	1998.320	4043.260	201
Longitudinal Bottom	23.169	0.000	22.797	-5338.435	11946.327	201
Transverse Top	25.000	0.000	15.583	2245.591	4601.620	201
Transverse Bottom	23.169	0.000	22.797	-5174.958	11601.894	201

12. FOOTING BASE PRESSURE

CASE-I

	Base Pressure Summary									
	Node	X-Coor(m)	Y-Coor(m)	Z-Coor(m)	Load Case	Base Pressure (kN/m2)				
Maximum Base Pressure	4	-2.000	0.000	24.500	201	461.17087				
Minimum Base Pressure	1	-2.000	0.000	-2.000	6	5.67247				

		Base Pressure S	ummary for Serv	rice Load condition	ons	
-	Node	X-Coor(m)	Y-Coor(m)	Z-Coor(m)	Load Case	Base Pressure (kN/m2)
Maximum Base Pressure	3	25.000	0.000	24.500	101	307.44716
Minimum Base Pressure	1	-2.000	0.000	-2.000	6	5.67247

CASE-II

Base Pressure Summary									
	Node	X-Coor(m)	Y-Coor(m)	Z-Coor(m)	Load Case	Base Pressure (kN/m2)			
Maximum Base Pressure	3	25.000	0.000	24.600	201	1531.53866			
Minimum Base Pressure	1	-2.000	0.000	-2.000	6	5.66833			

Base Pressure Summary for Service Load conditions

	Node	X-Coor(m)	Y-Coor(m)	Z-Coor(m)	Load Case	Base Pressure (kN/m2)
Maximum Base Pressure	3	25.000	0.000	24.600	101	1021.02532
Minimum Base Pressure	1	-2.000	0.000	-2.000	6	5.66833

3. CONCLUSIONS

- 1) Area of reinforcement is more in Corner columns, comparing than mid columns for both the cases.
- 2) Nodal displacement in Case-II is higher.
- 3) There is variation in pattern of Soil Pressure for Case-I and Case-II.
- 4) Mat footing reinforcement requirement is higher in Case-II.
- 5) Footing Base pressure is more in Case-II.

REFERENCES

- [1] IS: 456-2000, Code of Practice for concrete design.
- [2] IS: 875-1987 (Part 1) 1987, Code of Practice for Design Loads for buildings and structures – Dead loads.

L

- [3] IS: 875-1987 (Part 2) 1987, Code of Practice for Design Loads for buildings and structures – Imposed loads.
- [4] IS: 875-1987 (Part 3) 1987, Code of Practice for Design Wind loads for buildings and structures.
- [5] IS 1893 Code of Practice for Earthquake resistant design.

BIOGRAPHIES

Mohammed Muneeruddin Khan Assistant Professor

Chandra Gupta Nanna Assistant Professor

Amgoth Akhila Student

Adepu Neha Student