
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2122

Deployment of Debug and Trace for features in RISC-V Core

Sharad1, Dr. Kiran V2

1Student, RV College of Engineering, Karnataka India
2Associate Professor, RV College of Engineering, Karnataka India

 ---***---
Abstract - Modern technology complexity of SOC designs
makes it challenging to create a bug-free design. Therefore,
the chip design pipeline includes a number of procedures to
find faults both early on and later on. By locating the
problems in the system and localising them, verification and
validation both check if the design adheres to the
specification, but at separate points in the design cycle.
Verification is a pre-silicon process that involves modelling
the functioning of the design. The method of proving that an
RTL design is functionally accurate with regard to the
design standards is known as functional verification.
Functional verification makes an effort to determine
whether the suggested design is performing as expected. The
majority of the time and energy required for most
significant electrical system design projects is spent on this
complicated endeavour. It is essential that the design be
functionally tested and that any possible bugs be found
early. This paper discuss about verification done using trace
method of debugging in RISC V core.

Key Words: Verification; Debugging; Trace; RISCV;

1. INTRODUCTION

Given the limitations of time and money, a development
team wants to make sure that the design has as few faults
as possible before a chip or system goes into
manufacturing. That is the verification act, and the
coverage-based confidence level is measured in that way.
Debugging begins when an issue is identified, and it has
been estimated that this process can take anywhere
between 35 and 50 percent of the overall project duration.
The detection and elimination of design defects as well as
verification environment bugs are included in Fig.1. The
fact that the time to a remedy is unpredictable after a
defect has been detected is more concerning to many
teams. A significant portion of the debugging process is
unpredictable, and finding the best repair can be
challenging and even result in the introduction of new
defects.

There are two ASIC methods for debugging. First, an issue
must be identified, frequently by running a model of the
design using a testcase. Next, the problem's source must
be ascertained, and finally, a remedy must be chosen. The
second option is to analyse a system using tools that are
often static analysis tools that aim to identify a class of
issues utilising broad analytical methodologies. Running

debugging and tracing in the "RISC V core" is crucial for
validating new features because design flaws cost the firm
time, effort, and resources.

Fig.1. Where ASIC Engineers spend time

2. PHASES OF VERIFICATION

The different phases of verification is shown in Fig.2

2.1 Verification Plan

A test plan is a live document that serves as a road map for
achieving the goal. Introduction, presumptions, a list of
test cases, a list of features to be tested, an approach,
deliverables, resources, risks and timing, as well as entry
and exit criteria are all included in the test plan. A test plan
aids a verification engineer in understanding how to
conduct a verification. A test plan may be presented as a
document, spreadsheet, or straightforward text file,
among other formats. Sometimes an engineer's test plan
merely exists in their head, which is risky because it
prevents the process from being accurately measured and
managed. The test plan also includes a description of the
architecture of the testbench as well as a breakdown of
each component's capabilities.

2.2 Building Testbench

The development of the verification environment occurs in
this phase. If more than one engineer is working on it, each
verification component might be built sequentially or
concurrently. The coverage module should be written
down first because it provides an indication of how the
verification is going.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2123

2.3 Writing Tests

It's time to validate the DUT when the TestBench has been
developed and integrated with the DUT. In CDV, the tests
are first run at random until about 70% of coverage is
obtained or there is no progress in the coverage over a one-
day simulation. The coverage reports are analysed, and
additional tests are written to fill in the gaps.
Randomization is used in these tests to fill in the gaps.
Finally, corner cases, or difficult-to-reach events, must be
written in a directed verification style. Naturally,
debugging is carried out concurrently with DUT fixes.

Fig.2. Phases of Verification

2.4 Code Coverage

To measure the efficiency of verification implementation
and to check whether the testbench has exercised the
design completely, code coverage is used. code coverage
checks whether:

 lines of the DUT has been exercised.

 states in the FSM has been entered.

 paths within a block have been exercised.

 branches in Case have been entered.

 conditions in an if statement is simulated.

Types of code coverage are:

2.4.1 Line Coverage:

Number of statements (lines) covered in the simulation is
measured by statement coverage. It is expected to be 100%
for every project.

2.4.2 Block/Segment Coverage:

The block which are covered by begin-end, if-else or
always, group of statements are counted by the block
coverage.

2.4.3 Branch / Decision / Conditional Coverage:

Branch coverage will check the true or false of the branch
like if-else, case and the ternary operator (? :) statements.
The statements in these blocks are exercised by the applied
stimulus.

2.4.4 Path Coverage:

Different paths are created because of conditional
statements, which diverts the flow of stimulus to the
specific path. According to the applied stimulus the
condition which is satisfied only under those expressions
will execute, the path will be diverted according to that.
Path coverage covers these paths.

2.4.5 Toggle Coverage

Its the ratio of number of nodes toggled to the total number
of nodes present.

2.4.6 Functional Coverage

Functional coverage will check the overall functionality of
the design. It can be done using system verilog.

2.5 Analyze Coverage

At last analyzed both the functional coverage and code
coverage report and taken necessary steps to achieve
coverage goals and running different simulations with
different seed values. The overall block diagram is shown
in Fig.3.

Fig.3. Block Diagram of Test

3. Debugging

Finding and removing flaws is a meticulous process called
debugging. When a DUT's outputs do not match
expectations, a defect may exist in the DUT or occasionally
in the testbench. Software tools called debuggers give
verification and design engineers the ability to track a
program's progress, pause, resume, and run it in
interactive mode.

The basic steps in debugging are:

 Recognize the existence of a bug.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2124

 Determine the bug's origin.
 Find the source of the bug.
 Find a solution to the bug.
 After fixing it, test it.

3.1 Pass/Fail

Every test simulation should terminate with the generation
of a TEST FAILED or TEST PASSED report. It's known as
self-checking. If a test fails, log files and a waveform viewer
might aid in further debugging.

3.2 Log File

The operation is recorded in a text log file. The
appropriate information may be transmitted to log files
using Display system tasks. Three categories make up the
display group of system tasks: the display and write
activities, the strobed monitoring duties, and the
continuous monitoring jobs.

4. Debug by tracing

The term "trace" describes the procedure of gathering data
that demonstrates how a design's constituent parts are
functioning, carrying out, and performing. The trace
facilities that a target gives determine the traceability of
that target. For instance, storing trace data on a target for
subsequent analysis is only possible if the target has the
necessary capacities.

4.1 Instruction Trace

Information regarding a core's or processor's execution of
instructions is produced via the instruction trace. In a
straightforward example, if an instruction trace is enabled
and a core runs a loop 10 times, the decoded instruction
trace data will display the related loop code ten times as
shown in Fig.4.

Fig.4. Instruction Trace

4.2 Data Trace

Data trace generates details about a core's or processor's
data accesses. For instance, the data trace displays a load
instruction together with the corresponding load location
and value if a memory load instruction is executed and data
trace is enabled. The Fig. 5 below illustrates how a data
access would look in a data trace:

Fig.5. Data Trace

4.3 Instrumentation Trace

Operating System (OS), application, and system data are
produced through instrumentation traces. The
environment might push useful runtime data to the
instrumentation trace source for later analysis, for
instance, if an event happens when an application runs and
instrumentation trace is enabled.

5. Post Simulation Check

The data traced by the Trace encoder is not checked in the
test itself, it is done by post simulation scripts. The trace
data from the trace sink is decoded and the program flow is
reconstructed using the test's elf file. The reconstructed
trace program flow is then checked against the simulation
program flow which comes from internal monitors. The
trace on and trace off labels are inserted in the test. These
labels are preserved in the elf file, which is then used by the
post-sim checker to figure out when trace is enabled or
disabled in the test.

6.Result

The results from verification of test includes coverage
report as shown in Table 1. Based on the coverage report
values, it tells whether the debugging is required or not.
The overall debug process is done to increase the coverage
values. The Traced data in ASCII format is shown in Fig 6.
The post simulation checker compares the traced data and
the simulation data, if both are same, it reports a text
message of OK as shown in Fig.7.

Table -1: Coverage Values

Line Conditional Toggle Branch

74.6

955/1279

71.19

729/1024

37.69

2205/5850

65.90

1144/1736

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056

 Volume: 09 Issue: 07 | July 2022 www.irjet.net p-ISSN: 2395-0072

© 2022, IRJET | Impact Factor value: 7.529 | ISO 9001:2008 Certified Journal | Page 2125

Fig.6. Traced data in ASCII Format

Fig.7. Post sim checker result

7.Future scope

ASIC and FPGA sizes are getting bigger and bigger, which
is increasingly complicating verification. Long verification
is being caused by each tiny change in setup. Therefore,
50-70% of the resources allocated for chip development
are now being absorbed by verification activities. The
difficulty of verification further rises with the inclusion of
the CPU in the SoC, Which requires a deep knowledge of
architecture. Therefore effective ways of debugging i.e by
tracing is required.

8.Conclusion

The proper verification steps are defined which involves
collecting coverage values and based on coverage value
decided to debug. The debug by trace method is followed.
The traced data is collected by tracing over the code, and
in the post simulation part, the traced data (program
counter values) from the trace encoder, is compared with
the simulation data and it reports a message OK, if both
are same and if there is any mismatch, it will show the
report as error.

REFERENCES

[1] A. Waterman and K. Asanovi, “The risc-v instruction
set manual volume i: User-level isa document version
2,” CS Division EECS Department University of
California, 2017.

[2] X. Z. Linlin Su, “A real-time interactive verification
system for asic design,” IEEE, 2009.

[3] A. S. Kuen-Jong Lee Chin-Yao Chang, “A unified test
and debug platform for soc design,”IEEE 8th
International Conference on ASIC, 2009.

[4] K. V. A. B. Akshay Birari Piyush Birla, “A risc-v isa
compatible processor ip,”IEEE, 2020.

[5] D. S. V. D. Aneesh Raveendran Vinayak Baramu Patil,
“A risc-v instruction set processor-micro-architecture
design and analysis,” IEEE, 2016.

[6] E. R. Wilmer Ramirez Marco Sarmiento, “A flexible
debugger for a risc-v based 32-bit system-on-chip,”
IEEE, 2020.

[7] P. M. Kamran Rahmani Sudhi Proch, “Efficient
selection of trace and scan signals for post-silicon
debug,” IEEE, 2015.

[8] Z. N. Fatemeh Refan Bijan Alizadeh, “Bridging
presilicon and postsilicon debugging by instruction-
based trace signal selection in modern processors,”
IEEE, 2017.

